Heterothermy

Heterothermy (from Greek: heteros = "other" thermē = "heat.") is a physiological term for animals that exhibit characteristics of both poikilothermy and homeothermy.


Heterothermy or heterothermia refers to animals that can switch between ectothermic (or poikilothermic) and endothermic (or homeothermic) strategies. These changes in strategies typically occur on a daily basis or on an annual basis. More often than not, it is used as a way to dissociate the fluctuating metabolic rates seen in some small mammals and birds (e.g. bats and hummingbirds), from those of traditional cold blooded animals. In many bat species, body temperature and metabolic rate are elevated only during activity. When at rest, these animals reduce their metabolisms drastically, which results in their body temperature dropping to that of the surrounding environment. This makes them homeothermic when active, and poikilothermic when at rest. This phenomenon has been coined 'daily torpor' and was intensively studied in the Djungarian hamster. During the hibernation season, this animal shows strongly reduced metabolism each day during the rest phase while they revert to endothermic metabolism during their active phase, leading to normal euthermic body temperatures (around 38C). Larger mammals (e.g. ground squirrels) and bats show multi-day torpor bouts during hibernation (up to several weeks) in winter. During these multi-day torpor bouts, body temperature drops to ~1C above ambient temperature and metabolism may drop to about 1% of the normal endothemic metabolic rate. Even in these deep hibernators, the long periods of torpor is interrupted by bouts of endothermic metabolism, called arousals (typically lasting between 4–20 hours). These metabolic arousals cause body temperature to return to euthermic levels 35-37C. Most of the energy spent during hibernation is spent in arousals (70-80%), but their function remains unresolved. Shallow hibernation patterns without arousals have been described in large mammals (like the black bear,) or under special environmental circumstances.

Read more about Heterothermy:  Regional Heterothermy