Hessian Matrix - Critical Points and Discriminant

Critical Points and Discriminant

If the gradient of f (i.e. its derivative in the vector sense) is zero at some point x, then f has a critical point (or stationary point) at x. The determinant of the Hessian at x is then called the discriminant. If this determinant is zero then x is called a degenerate critical point of f, this is also called a non-Morse critical point of f. Otherwise it is non-degenerate, this is called a Morse critical point of f.

Read more about this topic:  Hessian Matrix

Famous quotes containing the words critical and/or points:

    Much of what contrives to create critical moments in parenting stems from a fundamental misunderstanding as to what the child is capable of at any given age. If a parent misjudges a child’s limitations as well as his own abilities, the potential exists for unreasonable expectations, frustration, disappointment and an unrealistic belief that what the child really needs is to be punished.
    Lawrence Balter (20th century)

    A few ideas seem to be agreed upon. Help none but those who help themselves. Educate only at schools which provide in some form for industrial education. These two points should be insisted upon. Let the normal instruction be that men must earn their own living, and that by the labor of their hands as far as may be. This is the gospel of salvation for the colored man. Let the labor not be servile, but in manly occupations like that of the carpenter, the farmer, and the blacksmith.
    Rutherford Birchard Hayes (1822–1893)