Critical Points and Discriminant
If the gradient of f (i.e. its derivative in the vector sense) is zero at some point x, then f has a critical point (or stationary point) at x. The determinant of the Hessian at x is then called the discriminant. If this determinant is zero then x is called a degenerate critical point of f, this is also called a non-Morse critical point of f. Otherwise it is non-degenerate, this is called a Morse critical point of f.
Read more about this topic: Hessian Matrix
Famous quotes containing the words critical and/or points:
“Much of what contrives to create critical moments in parenting stems from a fundamental misunderstanding as to what the child is capable of at any given age. If a parent misjudges a childs limitations as well as his own abilities, the potential exists for unreasonable expectations, frustration, disappointment and an unrealistic belief that what the child really needs is to be punished.”
—Lawrence Balter (20th century)
“The two great points of difference between a democracy and a republic are: first, the delegation of the government, in the latter, to a small number of citizens elected by the rest; secondly, the greater number of citizens and greater sphere of country over which the latter may be extended.”
—James Madison (17511836)