Definition
There are two different ways of standardizing the Hermite polynomials:
(the "probabilists' Hermite polynomials"), and
(the "physicists' Hermite polynomials"). These two definitions are not exactly equivalent; either is a rescaling of the other, to wit
These are Hermite polynomial sequences of different variances; see the material on variances below.
The notation He and H is that used in the standard references Tom H. Koornwinder, Roderick S. C. Wong, and Roelof Koekoek et al. (2010) and Abramowitz & Stegun. The polynomials Hen are sometimes denoted by Hn, especially in probability theory, because
is the probability density function for the normal distribution with expected value 0 and standard deviation 1.
The first eleven probabilists' Hermite polynomials are:
and the first eleven physicists' Hermite polynomials are:
Read more about this topic: Hermite Polynomials
Famous quotes containing the word definition:
“No man, not even a doctor, ever gives any other definition of what a nurse should be than thisdevoted and obedient. This definition would do just as well for a porter. It might even do for a horse. It would not do for a policeman.”
—Florence Nightingale (18201910)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“Scientific method is the way to truth, but it affords, even in
principle, no unique definition of truth. Any so-called pragmatic
definition of truth is doomed to failure equally.”
—Willard Van Orman Quine (b. 1908)