Gunshot Residue

Gunshot residue (GSR) is principally composed of burnt and unburnt particles from the explosive primer, the propellant, as well as components from the bullet, the cartridge case and the firearm used. There are authors who use other definitions, such as cartridge discharge residue (CDR) or firearm discharge residue (FDR). Gunshot Residue (GSR) is the residue that gets deposited on the hands of the shooter after the bullet has been fired. It may or may not have some burnt, unburnt or semi-burnt particles. GSR can be very helpful in connecting the firearm to the culprit, establishing the identity of the shooter and in some cases may help in eliminating the probability when the number of suspect is more. Gunshot residue can travel out from the gun to distances of 3–5 feet (0.9–1.5 meters) or even farther. At the farthest distance, only a few trace particles may be present. This information can be useful in determining if someone was involved in the firing of the gun. Close to the gun barrel, the residue deposits more heavily on surfaces like skin and clothing, to the point of being visible as a dark stain. Detection of a significant amount of residue, therefore, is a powerful piece of forensic evidence that the particular person was very near to, even holding, the gun when it discharged.

In 1971 John Boehm presented some micrographs of GSR particles found during the examination of bullet entrance holes using a scanning electron microscope. If the scanning electron microscope is equipped with an energy-dispersive X-ray spectroscopy detector, the chemical elements present in such particles, mainly lead, antimony and barium, can be identified.

In 1979 Wolten et al. proposed a classification of GSR following compositional criteria, morphology and size. Four compositions were considered “characteristic”: lead, antimony and barium; barium, calcium and silicon; antimony and barium. The authors proposed some rules about the chemical elements which could also be present in these particles.

Wallace and McQuillan published a new classification of the GSR particles in 1984. They called “unique” particles the ones containing lead, antimony and barium, or the ones containing antimony and barium. Also for Wallace and McQuillan in these particles only some chemical elements could be present.

In the latest ASTM Standard Guide for GSR analysis by Scanning Electron Microscopy/Energy Dispersive X-ray Spectrometry particles containing lead, antimony and barium, and respecting some rules related to the morphology and to the presence of other elements are considered characteristic of GSR. The most definitive method to determine if a particle is characteristic of or consistent with GSR is by its elemental profile. An approach to the identification of particles characteristic of or consistent with GSR is to compare the elemental profile of the recovered particulate with that collected from case-specific known source items, such as the recovered weapon, cartridge cases or victim-related items whenever necessary. This approach was called ‘‘case by case’’ by Romolo and Margot in an article published in 2001. In 2010 Dalby et al. published the latest review on the subject and concluded that the adoption of a ‘‘case by case’’ approach to GSR analysis must be seen as preferable, in agreement with Romolo and Margot.

In light of similar particles which can be produced from extraneous sources, both Mosher et al. (1998) and Grima et al. (2012) presented evidence of pyrotechnic particles which can be mistakenly identified as GSR. Both publications highlight that certain markers of exclusion and reference to the general population of collected particulate can help the expert in designating GSR-similar particles as firework-sourced.

Particle analysis by scanning electron microscope equipped with an energy-dispersive X-ray spectroscopy detector can be the most powerful tool for forensic scientists to determine the proximity to a discharging firearm and/or the contact with a surface exposed to GSR (firearm, spent cartridge case, target hole), if proper attention is paid to avoid secondary gunshot residue transfer from officers onto subjects or items to be tested for GSR, and to avoid contamination in the laboratories.

Organic gunshot residue can be analysed by analytical techniques such as chromatography, capillary electrophoresis, and mass spectrometry.

Famous quotes containing the words gunshot and/or residue:

    Open the envelope quickly,
    O this is not our son’s writing, yet his name is sign’d,
    O a strange hand writes for our dear son, O stricken mother’s soul!
    All swims before her eyes, flashes with black, she catches the main
    words only,
    Sentences broken, gunshot wound in the breast, cavalry skirmish, taken to hospital,
    At present low, but will soon be better.
    Walt Whitman (1819–1892)

    Every poem of value must have a residue [of language].... It cannot be exhausted because our lives are not long enough to do so. Indeed, in the greatest poetry, the residue may seem to increase as our experience increases—that is, as we become more sensitive to the particular ignitions in its language. We return to a poem not because of its symbolic [or sociological] value, but because of the waste, or subversion, or difficulty, or consolation of its provision.
    William Logan, U.S. educator. “Condition of the Individual Talent,” The Sewanee Review, p. 93, Winter 1994.