Group Action - Orbits and Stabilizers

Orbits and Stabilizers

Consider a group G acting on a set X. The orbit of a point x in X is the set of elements of X to which x can be moved by the elements of G. The orbit of x is denoted by Gx:

The defining properties of a group guarantee that the set of orbits of (points x in) X under the action of G form a partition of X. The associated equivalence relation is defined by saying x ~ y if and only if there exists a g in G with g.x = y. The orbits are then the equivalence classes under this relation; two elements x and y are equivalent if and only if their orbits are the same; i.e., Gx = Gy.

The group action is transitive if and only if it has only one orbit, i.e. if there exists x in X with Gx=X. This is the case if and only if Gx=X for all x in X.

The set of all orbits of X under the action of G is written as X/G (or, less frequently: G \X), and is called the quotient of the action. In geometric situations it may be called the orbit space, while in algebraic situations it may be called the space of coinvariants, and written XG, by contrast with the invariants (fixed points), denoted XG: the coinvariants are a quotient while the invariants are a subset. The coinvariant terminology and notation are used particularly in group cohomology and group homology, which use the same superscript/subscript convention.

Read more about this topic:  Group Action

Famous quotes containing the word orbits:

    To me, however, the question of the times resolved itself into a practical question of the conduct of life. How shall I live? We are incompetent to solve the times. Our geometry cannot span the huge orbits of the prevailing ideas, behold their return, and reconcile their opposition. We can only obey our own polarity.
    Ralph Waldo Emerson (1803–1882)