Golden Ratio Base - Representing Rational Numbers As Golden Ratio Base Numbers

Representing Rational Numbers As Golden Ratio Base Numbers

Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):

  • 1/2 ≈ 0.010 010 010 010 ... φ
  • 1/3 ≈ 0.00101000 00101000 00101000... φ
  • √5 = 10.1φ
  • 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ

The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):

.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.

The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.

Read more about this topic:  Golden Ratio Base

Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:

    There are people who are so presumptuous that they know no other way to praise a greatness that they publicly admire than by representing it as a preliminary stage and bridge leading to themselves.
    Friedrich Nietzsche (1844–1900)

    ... how can a rational being be ennobled by any thing that is not obtained by its own exertions?
    Mary Wollstonecraft (1759–1797)

    Publishers are notoriously slothful about numbers, unless they’re attached to dollar signs—unlike journalists, quarterbacks, and felony criminal defendents who tend to be keenly aware of numbers at all times.
    Hunter S. Thompson (b. 1939)

    Come live with me, and be my love,
    And we will some new pleasures prove
    Of golden sands, and crystal brooks,
    With silken lines, and silver hooks.
    John Donne (1572–1631)

    People are lucky and unlucky not according to what they get absolutely, but according to the ratio between what they get and what they have been led to expect.
    Samuel Butler (1835–1902)

    Time, force, and death
    Do to this body what extremes you can,
    But the strong base and building of my love
    Is as the very centre of the earth,
    Drawing all things to it.
    William Shakespeare (1564–1616)