Golden Ratio Base - Representing Rational Numbers As Golden Ratio Base Numbers

Representing Rational Numbers As Golden Ratio Base Numbers

Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):

  • 1/2 ≈ 0.010 010 010 010 ... φ
  • 1/3 ≈ 0.00101000 00101000 00101000... φ
  • √5 = 10.1φ
  • 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ

The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):

.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.

The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.

Read more about this topic:  Golden Ratio Base

Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:

    There are people who are so presumptuous that they know no other way to praise a greatness that they publicly admire than by representing it as a preliminary stage and bridge leading to themselves.
    Friedrich Nietzsche (1844–1900)

    Social and scientific progress are assured, sir, once our great system of postpossession payments is in operation, not the installment plan, no sir, but a system of small postpossession payments that clinch the investment. No possible rational human wish unfulfilled. A man with a salary of fifty dollars a week can start payments on a Rolls-Royce, the Waldorf-Astoria, or a troupe of trained seals if he so desires.
    John Dos Passos (1896–1970)

    Our religion vulgarly stands on numbers of believers. Whenever the appeal is made—no matter how indirectly—to numbers, proclamation is then and there made, that religion is not. He that finds God a sweet, enveloping presence, who shall dare to come in?
    Ralph Waldo Emerson (1803–1882)

    We are too civil to books. For a few golden sentences we will turn over and actually read a volume of four or five hundred pages.
    Ralph Waldo Emerson (1803–1882)

    A magazine or a newspaper is a shop. Each is an experiment and represents a new focus, a new ratio between commerce and intellect.
    John Jay Chapman (1862–1933)

    The desire of most parents is first and foremost to do what is best for their children. Every interview with a mother or father confirms this, every letter written by a parent breathes this deep-seated wish, “I hope I am doing the right thing for my child.” This is real and honest, and at the very base of parenthood.
    Irma Simonton Black (20th century)