Representing Rational Numbers As Golden Ratio Base Numbers
Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):
- 1/2 ≈ 0.010 010 010 010 ... φ
- 1/3 ≈ 0.00101000 00101000 00101000... φ
- √5 = 10.1φ
- 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ
The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):
.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.
Read more about this topic: Golden Ratio Base
Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:
“There are people who are so presumptuous that they know no other way to praise a greatness that they publicly admire than by representing it as a preliminary stage and bridge leading to themselves.”
—Friedrich Nietzsche (18441900)
“Every rational creature has all nature for his dowry and estate. It is his, if he will. He may divest himself of it; he may creep into a corner, and abdicate his kingdom, as most men do, but he is entitled to the world by his constitution.”
—Ralph Waldo Emerson (18031882)
“Im not even thinking straight any more. Numbers buzz in my head like wasps.”
—Kurt Neumann (19061958)
“Care keeps his watch in every old mans eye,
And where care lodges, sleep will never lie;
But where unbruisèd youth with unstuffed brain
Doth couch his limbs, there golden sleep doth reign.”
—William Shakespeare (15641616)
“Official dignity tends to increase in inverse ratio to the importance of the country in which the office is held.”
—Aldous Huxley (18941963)
“The highest perfection of politeness is only a beautiful edifice, built, from the base to the dome, of ungraceful and gilded forms of charitable and unselfish lying.”
—Mark Twain [Samuel Langhorne Clemens] (18351910)