Representing Rational Numbers As Golden Ratio Base Numbers
Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):
- 1/2 ≈ 0.010 010 010 010 ... φ
- 1/3 ≈ 0.00101000 00101000 00101000... φ
- √5 = 10.1φ
- 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ
The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):
.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.
Read more about this topic: Golden Ratio Base
Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:
“He who has learned what is commonly considered the whole art of painting, that is, the art of representing any natural object faithfully, has as yet only learned the language by which his thoughts are to be expressed.”
—John Ruskin (18191900)
“Since the Greeks, Western man has believed that Being, all Being, is intelligible, that there is a reason for everything ... and that the cosmos is, finally, intelligible. The Oriental, on the other hand, has accepted his existence within a universe that would appear to be meaningless, to the rational Western mind, and has lived with this meaninglessness. Hence the artistic form that seems natural to the Oriental is one that is just as formless or formal, as irrational, as life itself.”
—William Barrett (b. 1913)
“All experience teaches that, whenever there is a great national establishment, employing large numbers of officials, the public must be reconciled to support many incompetent men; for such is the favoritism and nepotism always prevailing in the purlieus of these establishments, that some incompetent persons are always admitted, to the exclusion of many of the worthy.”
—Herman Melville (18191891)
“Here is a golden Rule.... Write legibly. The average temper of the human race would be perceptibly sweetened, if everybody obeyed this Rule!”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Personal rights, universally the same, demand a government framed on the ratio of the census: property demands a government framed on the ratio of owners and of owning.”
—Ralph Waldo Emerson (18031882)
“I have always heard, Sancho, that doing good to base fellows is like throwing water into the sea.”
—Miguel De Cervantes (15471616)