Golden Ratio Base - Representing Rational Numbers As Golden Ratio Base Numbers

Representing Rational Numbers As Golden Ratio Base Numbers

Every non-negative rational number can be represented as a recurring base-φ expansion, as can any non-negative element of the field Q = Q + √5Q, the field generated by the rational numbers and √5. Conversely any recurring (or terminating) base-φ expansion is a non-negative element of Q. Some examples (with spaces added for emphasis):

  • 1/2 ≈ 0.010 010 010 010 ... φ
  • 1/3 ≈ 0.00101000 00101000 00101000... φ
  • √5 = 10.1φ
  • 2+(1/13)√5 ≈ 10.010 1000100010101000100010000000 1000100010101000100010000000 1000100010101000100010000000 ...φ

The justification that a rational gives a recurring expansion is analogous to the equivalent proof for a base-n numeration system (n=2,3,4,...). Essentially in base-φ long division there are only a finite number of possible remainders, and so once there must be a recurring pattern. For example with 1/2 = 1/10.01φ = 100φ/1001φ long division looks like this (note that base-φ subtraction may be hard to follow at first):

.0 1 0 0 1 ________________________ 1 0 0 1 ) 1 0 0.0 0 0 0 0 0 0 0 1 0 0 1 trade: 10000 = 1100 = 1011 ------- so 10000-1001 = 1011-1001 = 10 1 0 0 0 0 1 0 0 1 ------- etc.

The converse is also true, in that a number with a recurring base-φ; representation is an element of the field Q. This follows from the observation that a recurring representation with period k involves a geometric series with ratio φ-k, which will sum to an element of Q.

Read more about this topic:  Golden Ratio Base

Famous quotes containing the words representing, rational, numbers, golden, ratio and/or base:

    ... today we round out the first century of a professed republic,—with woman figuratively representing freedom—and yet all free, save woman.
    Phoebe W. Couzins (1845–1913)

    ... how can a rational being be ennobled by any thing that is not obtained by its own exertions?
    Mary Wollstonecraft (1759–1797)

    Green grow the rushes-O
    What is your one-O?
    —Unknown. Carol of the Numbers (l. 2–3)

    In books one finds golden mansions and women as beautiful as jewels.
    Chinese proverb.

    People are lucky and unlucky not according to what they get absolutely, but according to the ratio between what they get and what they have been led to expect.
    Samuel Butler (1835–1902)

    You see how this House of Commons has begun to verify all the ill prophecies that were made of it—low, vulgar, meddling with everything, assuming universal competency, and flattering every base passion—and sneering at everything noble refined and truly national. The direct tyranny will come on by and by, after it shall have gratified the multitude with the spoil and ruin of the old institutions of the land.
    Samuel Taylor Coleridge (1772–1834)