Goldbach's Conjecture - Heuristic Justification

Heuristic Justification

Statistical considerations which focus on the probabilistic distribution of prime numbers present informal evidence in favour of the conjecture (in both the weak and strong forms) for sufficiently large integers: the greater the integer, the more ways there are available for that number to be represented as the sum of two or three other numbers, and the more "likely" it becomes that at least one of these representations consists entirely of primes.

A very crude version of the heuristic probabilistic argument (for the strong form of the Goldbach conjecture) is as follows. The prime number theorem asserts that an integer m selected at random has roughly a chance of being prime. Thus if n is a large even integer and m is a number between 3 and n/2, then one might expect the probability of m and nm simultaneously being prime to be . If one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly

Since this quantity goes to infinity as n increases, we expect that every large even integer has not just one representation as the sum of two primes, but in fact has very many such representations.

This heuristic argument is actually somewhat inaccurate, because it assumes that the events of m and nm being prime are statistically independent of each other. For instance, if m is odd then nm is also odd, and if m is even, then nm is even, a non-trivial relation because (besides 2) only odd numbers can be prime. Similarly, if n is divisible by 3, and m was already a prime distinct from 3, then nm would also be coprime to 3 and thus be slightly more likely to be prime than a general number. Pursuing this type of analysis more carefully, Hardy and Littlewood in 1923 conjectured (as part of their famous Hardy–Littlewood prime tuple conjecture) that for any fixed c ≥ 2, the number of representations of a large integer n as the sum of c primes with should be asymptotically equal to

 \left(\prod_p \frac{p \gamma_{c,p}(n)}{(p-1)^c}\right)
\int_{2 \leq x_1 \leq \cdots \leq x_c: x_1+\cdots+x_c = n} \frac{dx_1 \cdots dx_{c-1}}{\ln x_1 \cdots \ln x_c}

where the product is over all primes p, and is the number of solutions to the equation in modular arithmetic, subject to the constraints . This formula has been rigorously proven to be asymptotically valid for c ≥ 3 from the work of Vinogradov, but is still only a conjecture when . In the latter case, the above formula simplifies to 0 when n is odd, and to

 2 \Pi_2 \left(\prod_{p|n; p \geq 3} \frac{p-1}{p-2}\right) \int_2^n \frac{dx}{\ln^2 x}
\approx 2 \Pi_2 \left(\prod_{p|n; p \geq 3} \frac{p-1}{p-2}\right) \frac{n}{\ln^2 n}

when n is even, where is the twin prime constant

This is sometimes known as the extended Goldbach conjecture. The strong Goldbach conjecture is in fact very similar to the twin prime conjecture, and the two conjectures are believed to be of roughly comparable difficulty.

The Goldbach partition functions shown here can be displayed as histograms which informatively illustrate the above equations. See Goldbach's comet.

Read more about this topic:  Goldbach's Conjecture