Goddard Space Flight Center - Science

Science

Addressing Scientific Questions

NASA's missions (and therefore Goddard’s missions) address a broad range of scientific questions generally classified around four key areas: Earth sciences, astrophysics, heliophysics, and the solar system. To simplify, Goddard studies Earth and Space.

Within the Earth sciences area, Goddard plays a major role in research to advance our understanding of the Earth as an environmental system, looking at questions related to how the components of that environmental system have developed, how they interact and how they evolve. This is all important to enable scientists to understand the practical impacts of natural and human activities during the coming decades and centuries.

Within Space Sciences, Goddard has distinguished itself with the 2006 Nobel Physics Prize given to John Mather and the COBE mission. Beyond the COBE mission, Goddard studies how the universe formed, what it is made of, how its components interact, and how it evolves. The Center also contributes to research seeking to understand how stars and planetary systems form and evolve and studies the nature of the Sun’s interaction with its surroundings.

From Scientific Questions to Science Missions

Based on existing knowledge accumulated through previous missions, new science questions are articulated. Missions are developed in the same way an experiment would be developed using the scientific method. In this context, Goddard does not work as an independent entity but rather as one of the 10 NASA centers working together to find answers to these scientific questions.

Each mission starts with a set of scientific questions to be answered, a set of scientific requirements for the mission, which build on what has already been discovered by prior missions. Scientific requirements spell out the types data that will need to be collected. These scientific requirements are then transformed into mission concepts that start to specify the kind of spacecraft and scientific instruments need to be developed for these scientific questions to be answered.

Within Goddard, the Sciences and Exploration Directorate (SED) leads the center's scientific endeavors, including the development of technology related to scientific pursuits.

Collecting Data in Space – Scientific Instruments

Some of the most important technological advances developed by Goddard (and NASA in general) come from the need to innovate with new scientific instruments in order to be able to observe or measure phenomena in space that have never been measured or observed before. Instrument names tend to be known by their initials. In some cases, the mission's name gives an indication of the type of instrument involved. For example, the James Webb Space Telescope is, as its name indicates, a telescope, but it includes a suite of four distinct scientific instruments: Mid Infrared Instrument (MIRI); Near Infrared Camera (NIRCam); Near Infrared Spectrograph (NIRSpec); Fine Guidance Sensor Tunable Filter Imager (FGS-TFI). Scientists at Goddard work closely with the engineers to develop these instruments.

Typically, a mission consists of a spacecraft with an instrument suite (multiple instruments) on board. In some cases, the scientific requirements dictate the need for multiple spacecraft. For example, the Magnetospheric Multiscale Mission (MMS) will study reconnection, a 3-D process. In order to capture data about this complex 3-D process, a set of four spacecraft flying as a tetrahedron is being developed. Each spacecraft will carry an instrument suite consisting of four instruments. MMS is part of a larger program (Solar Terrestrial Probes) that studies the impact of the sun on the solar system.

Goddard's Scientific Collaborations

In many cases, Goddard works with partners (US Government agencies, aerospace industry, university-based research centers, other countries) that are responsible for developing the scientific instruments. In other cases, Goddard develops one or more of the instruments. The individual instruments are then integrated into an instrument suite which is then integrated with the spacecraft. In the case of MMS, for example, Southwest Research Institute (SwRI) is responsible for developing the scientific instruments and Goddard provides overall project management, mission systems engineering, the spacecraft, and mission operations.

On the Lunar Reconnaissance Orbiter (LRO), six instruments have been developed by a range of partners. One of the instruments, the Lunar Orbiter Laser Altimeter (LOLA), was developed by Goddard. LOLA measures landing site slopes and lunar surface roughness in order to generate a 3-D map of the moon.

The newest (as of October 2008) Mission to be managed by Goddard is MAVEN. MAVEN is the second mission within the Mars Scout Program that will explore the atmosphere of Mars in support of NASA's broader efforts to go to Mars. MAVEN will carry eight instruments to measure characteristics of Mars' atmospheric gases, upper atmosphere, solar wind, and ionosphere. Instrument development partners include the University of Colorado at Boulder, and the University of California, Berkeley. Goddard will contribute overall project management as well as two of the instruments, two magnetometers.

Managing Scientific Data

Once a mission is launched and reaches its destination, its instruments start collecting data. The data is transmitted back to earth where it needs to be analyzed and stored for future reference. Goddard manages large collections of scientific data resulting from past and ongoing missions.

The Earth Science Division hosts the Goddard Earth Science Data and Information Services Division (GES DISC). It offers Earth science data, information, and services to research scientists, applications scientists, applications users, and students.

The National Space Science Data Center (NSSDC), created at Goddard in 1966, hosts a permanent archive of space science data, including a large collection of images from space.

Read more about this topic:  Goddard Space Flight Center

Famous quotes containing the word science:

    Science is the language of the temporal world; love is that of the spiritual world. Man, indeed, describes more than he explains; while the angelic spirit sees and understands. Science saddens man; love enraptures the angel; science is still seeking, love has found. Man judges of nature in relation to itself; the angelic spirit judges of it in relation to heaven. In short to the spirits everything speaks.
    Honoré De Balzac (1799–1850)

    He who would do good to another must do it in Minute Particulars:
    General Good is the plea of the scoundrel, hypocrite, and flatterer,
    For Art and Science cannot exist but in minutely organized Particulars.
    William Blake (1757–1827)

    Our science has become terrible, our research dangerous, our findings deadly. We physicists have to make peace with reality. Reality is not as strong as we are. We will ruin reality.
    Friedrich Dürrenmatt (1921–1990)