Goal Programming - Variants

Variants

The initial goal programming formulations ordered the unwanted deviations into a number of priority levels, with the minimisation of a deviation in a higher priority level being infinitely more important than any deviations in lower priority levels. This is known as lexicographic or pre-emptive goal programming. Ignizio gives an algorithm showing how a lexicographic goal programme can be solved as a series of linear programmes. Lexicographic goal programming should be used when there exists a clear priority ordering amongst the goals to be achieved.

If the decision maker is more interested in direct comparisons of the objectives then Weighted or non pre-emptive goal programming should be used. In this case all the unwanted deviations are multiplied by weights, reflecting their relative importance, and added together as a single sum to form the achievement function. It is important to recognise that deviations measured in different units cannot be summed directly due to the phenomenon of incommensurability.

Hence each unwanted deviation is multiplied by a normalisation constant to allow direct comparison. Popular choices for normalisation constants are the goal target value of the corresponding objective (hence turning all deviations into percentages) or the range of the corresponding objective (between the best and the worst possible values, hence mapping all deviations onto a zero-one range). For decision makers more interested in obtaining a balance between the competing objectives, Chebyshev goal programming should be used. Introduced by Flavell in 1976, this variant seeks to minimise the maximum unwanted deviation, rather than the sum of deviations. This utilises the Chebyshev distance metric, which emphasizes justice and balance rather than ruthless optimisation.

Read more about this topic:  Goal Programming

Famous quotes containing the word variants:

    Nationalist pride, like other variants of pride, can be a substitute for self-respect.
    Eric Hoffer (1902–1983)