Glia Limitans - Current Research

Current Research

As of 2011, research is focused on the two-way communication between neurons and glial cells. Communication between these two types of cells allows for axonal conduction, synaptic transmission, as well as the processing of information to regulate and better control the processes of the central nervous system. The various forms of communication include neurotransmission, ion fluxes and signaling molecules. As recently as 2002, new information on the process of neuron-glia communication was published by R. Douglas Fields and Beth Stevens-Graham. They used advanced imaging methods to explain that the ion channels seen in glial cells did not contribute to action potentials but rather allowed the glia to determine the level of neuronal activity within proximity. Glial cells were determined to communicate with one another solely with chemical signals and even had specialized glial-glial and neuron-glial neurotransmitter signaling systems. Additionally, neurons were found to release chemical messengers in extrasynaptic regions, suggesting that the neuron-glial relationship includes functions beyond synaptic transmission. Glia have been known to assist in synapse formation, regulating synapse strength, and information processing as mentioned above. The process for adenosine triphospahte (ATP), glutamate, and other chemical messenger release from glia is debated and is seen as a direction for future research.

Read more about this topic:  Glia Limitans

Famous quotes containing the words current and/or research:

    But human experience is usually paradoxical, that means incongruous with the phrases of current talk or even current philosophy.
    George Eliot [Mary Ann (or Marian)

    The great question that has never been answered, and which I have not yet been able to answer, despite my thirty years of research into the feminine soul, is “What does a woman want?” [Was will das Weib?]
    Sigmund Freud (1856–1939)