History
The Fields Medal was awarded to Thurston in 1982 partially for his proof of the geometrization conjecture for Haken manifolds.
The case of 3-manifolds that should be spherical has been slower, but provided the spark needed for Richard Hamilton to develop his Ricci flow. In 1982, Hamilton showed that given a closed 3-manifold with a metric of positive Ricci curvature, the Ricci flow would collapse the manifold to a point in finite time, which proves the geometrization conjecture for this case as the metric becomes "almost round" just before the collapse. He later developed a program to prove the geometrization conjecture by Ricci flow with surgery. The idea is that the Ricci flow will in general produce singularities, but one may be able to continue the Ricci flow past the singularity by using surgery to change the topology of the manifold. Roughly speaking, the Ricci flow contracts positive curvature regions and expands negative curvature regions, so it should kill off the pieces of the manifold with the "positive curvature" geometries S3 and S2 × R, while what is left at large times should have a thick-thin decomposition into a "thick" piece with hyperbolic geometry and a "thin" graph manifold.
In 2003 Grigori Perelman sketched a proof of the geometrization conjecture by showing that the Ricci flow can indeed be continued past the singularities, and has the behavior described above. The main difficulty in verifying Perelman's proof of the Geometrization conjecture was a critical use of his Theorem 7.4 in the preprint 'Ricci Flow with surgery on three-manifolds'. This theorem was stated by Perelman without proof. There are now several different proofs of Perelman's Theorem 7.4, or variants of it which are sufficient to prove geometrization. There is the paper of Shioya and Yamaguchi that uses Perelman's stability theorem and a fibration theorem for Alexandrov spaces. This method, with full details leading to the proof of Geometrization, can be found in the exposition by B. Kleiner and J. Lott in 'Notes on Perelman's papers' in the journal Geometry & Topology.
A second route to Geometrization is the method of Bessières et al., which uses Thurston's hyperbolization theorem for Haken manifolds and Gromov's norm for 3-manifolds. A book by the same authors with complete details of their version of the proof has been published by the European Mathematical Society.
Also containing proofs of Perelman's Theorem 7.4, there is a paper of Morgan and Tian, another paper of Kleiner and Lott, and a paper by Cao and Ge.
Read more about this topic: Geometrization Conjecture
Famous quotes containing the word history:
“If man is reduced to being nothing but a character in history, he has no other choice but to subside into the sound and fury of a completely irrational history or to endow history with the form of human reason.”
—Albert Camus (19131960)
“History has neither the venerableness of antiquity, nor the freshness of the modern. It does as if it would go to the beginning of things, which natural history might with reason assume to do; but consider the Universal History, and then tell us,when did burdock and plantain sprout first?”
—Henry David Thoreau (18171862)
“I believe that in the history of art and of thought there has always been at every living moment of culture a will to renewal. This is not the prerogative of the last decade only. All history is nothing but a succession of crisesMof rupture, repudiation and resistance.... When there is no crisis, there is stagnation, petrification and death. All thought, all art is aggressive.”
—Eugène Ionesco (b. 1912)