Some Results Involving Geodesic Curvature
- The geodesic curvature is no other than the usual curvature of the curve when computed intrinsically in the submanifold . It does not depend on the way the submanifold sits in .
- On the contrary the normal curvature depends strongly on how the submanifold lies in the ambient space, but marginally on the curve: only depends on the point on the submanifold and the direction, but not on .
- In general Riemannian geometry the derivative will be computed using the Levi-Civita connection of the ambient manifold. It splits into a tangent part and a normal part to the submanifold:, and the tangent part is then the usual derivative in (see Gauss equation in the Gauss-Codazzi equations).
- The Gauss–Bonnet theorem.
Read more about this topic: Geodesic Curvature
Famous quotes containing the words results and/or involving:
“Consider what you have in the smallest chosen library. A company of the wisest and wittiest men that could be picked out of all civil countries in a thousand years have set in best order the results of their learning and wisdom. The men themselves were hid and inaccessible, solitary, impatient of interruption, fenced by etiquette; but the thought which they did not uncover in their bosom friend is here written out in transparent words to us, the strangers of another age.”
—Ralph Waldo Emerson (18031882)
“What causes adolescents to rebel is not the assertion of authority but the arbitrary use of power, with little explanation of the rules and no involvement in decision-making. . . . Involving the adolescent in decisions doesnt mean that you are giving up your authority. It means acknowledging that the teenager is growing up and has the right to participate in decisions that affect his or her life.”
—Laurence Steinberg (20th century)