Genetically Modified Plant - Methods

Methods

A genetically engineered plants is generated in a laboratory by altering its genetic makeup. This is usually done by adding one or more genes to a plant's genome using genetic engineering techniques. Most genetically modified plants are generated by the biolistic method (particle gun) or by Agrobacterium tumefaciens mediated transformation. Plant scientists, backed by results of modern comprehensive profiling of crop composition, point out that crops modified using GM techniques are less likely to have unintended changes than are conventionally bred crops.

In research tobacco and Arabidopsis thaliana are the most genetically modified plants, due to well developed transformation methods, easy propagation and well studied genomes. They serve as model organisms for other plant species.

In the biolistic method, DNA is bound to tiny particles of gold or tungsten which are subsequently shot into plant tissue or single plant cells under high pressure. The accelerated particles penetrate both the cell wall and membranes. The DNA separates from the metal and is integrated into plant genome inside the nucleus. This method has been applied successfully for many cultivated crops, especially monocots like wheat or maize, for which transformation using Agrobacterium tumefaciens has been less successful. The major disadvantage of this procedure is that serious damage can be done to the cellular tissue.

Agrobacteria are natural plant parasites, and their natural ability to transfer genes provides another method for the development of genetically engineered plants. To create a suitable environment for themselves, these Agrobacteria insert their genes into plant hosts, resulting in a proliferation of plant cells near the soil level (crown gall). The genetic information for tumour growth is encoded on a mobile, circular DNA fragment (plasmid). When Agrobacterium infects a plant, it transfers this T-DNA to a random site in the plant genome. When used in genetic engineering the bacterial T-DNA is removed from the bacterial plasmid and replaced with the desired foreign gene. The bacterium is a vector, enabling transportation of foreign genes into plants. This method works especially well for dicotyledonous plants like potatoes, tomatoes, and tobacco. Agrobacteria infection is less successful in crops like wheat and maize.

Introducing new genes into plants requires a promoter specific to the area where the gene is to be expressed. For instance, if we want the gene to be expressed only in rice grains and not in leaves, then an endosperm-specific promoter would be used. The codons of the gene must also be optimized for the organism due to codon usage bias. The transgenic gene products should also be able to be denatured by heat so that they are destroyed during cooking.

Read more about this topic:  Genetically Modified Plant

Famous quotes containing the word methods:

    A woman might claim to retain some of the child’s faculties, although very limited and defused, simply because she has not been encouraged to learn methods of thought and develop a disciplined mind. As long as education remains largely induction ignorance will retain these advantages over learning and it is time that women impudently put them to work.
    Germaine Greer (b. 1939)

    How can you tell if you discipline effectively? Ask yourself if your disciplinary methods generally produce lasting results in a manner you find acceptable. Whether your philosophy is democratic or autocratic, whatever techniques you use—reasoning, a “star” chart, time-outs, or spanking—if it doesn’t work, it’s not effective.
    Stanley Turecki (20th century)

    I think it is a wise course for laborers to unite to defend their interests.... I think the employer who declines to deal with organized labor and to recognize it as a proper element in the settlement of wage controversies is behind the times.... Of course, when organized labor permits itself to sympathize with violent methods or undue duress, it is not entitled to our sympathy.
    William Howard Taft (1857–1930)