Genetic Variability - Causes

Causes

There are many sources of genetic variability in a population:

  • Homologous recombination is a significant source of variability. During meiosis in sexual organisms, two homologous chromosomes from the male and female parents cross over one another and exchange genetic material. The chromosomes then split apart and are ready to form an offspring. Chromosomal crossover is random and is governed by its own set of genes that code for where crossovers can occur (in cis) and for the mechanism behind the exchange of DNA chunks (in trans). Being controlled by genes means that recombination is also variable in frequency, location, thus it can be selected to increase fitness by nature, because the more recombination the more variability and the more variability the easier it is for the population to handle changes.
  • Immigration, emigration, and translocation – each of these is the movement of an individual into or out of a population. When an individual comes from a previously genetically isolated population into a new one it will increase the genetic variability of the next generation if it reproduces.
  • Polyploidy – having more than two homologous chromosomes allows for even more recombination during meiosis allowing for even more genetic variability in one's offspring.
  • Diffuse centromeres – in asexual organisms where the offspring is an exact genetic copy of the parent, there are limited sources of genetic variability. One thing that increased variability, however, is having diffused instead of localized centromeres. Being diffused allows the chromatids to split apart in many different ways allowing for chromosome fragmentation and polyploidy creating more variability.
  • Genetic mutations – contribute to the genetic variability within a population and can have positive, negative, or neutral effects on a fitness. This variability can be easily propagated throughout a population by natural selection if the mutation increases the affected individual's fitness and its effects will be minimized/hidden if the mutation is deleterious. However, the smaller a population and its genetic variability are, the more likely the recessive/hidden deleterious mutations will show up causing genetic drift.

Read more about this topic:  Genetic Variability