Genetic History of Europe - Genetic Studies

Genetic Studies

Further information: Population genetics

One of the first scholars to perform genetic studies was Luigi Luca Cavalli-Sforza. He used classical genetic markers to analyse DNA by proxy. This method studies differences in the frequencies of particular allelic traits, namely polymorphisms from proteins found within human blood (such as the ABO blood groups, Rhesus blood antigens, HLA loci, immunoglobulins, G-6-P-D isoenzymes, amongst others). Subsequently his team calculated genetic distance between populations, based on the principle that two populations that share similar frequencies of a trait are more closely related than populations that have more divergent frequencies of the trait. From this, he constructed phylogenetic trees which showed genetic distances diagrammatically. His team also performed principal component analyses, which is good at analysing multivariate data with minimal loss of information. The information that is lost can be partly restored by generating a second principal component, and so on. In turn, the information from each individual principal component (PC) can be presented graphically in synthetic maps. These maps show peaks and troughs, which represent populations whose gene frequencies take extreme values compared to others in the studied area.

Peaks and troughs usually, but not necessarily, connected by smooth gradients, called clines. Genetic clines can be generated in several ways: including adaptation to environment (natural selection), continuous gene flow between two initially different populations, or a demographic expansion into a scarcely populated environment with little initial admixture with pre-existing populations. Cavalli-Sforza connected these gradients with postulated pre-historic population movements based on known archaeological and linguistic theories. However, given that the time depths of such patterns are not known, "associating them with particular demographic events is usually speculative".

Studies using direct DNA analysis are now abundant, and may utilize mitochondrial DNA (mtDNA), the non-recombining portion of the Y chromosome (NRY) or autosomal DNA. MtDNA and NRY DNA share some similar features which have made them particularly useful in genetic anthropology. These properties include the direct, unaltered inheritance of mtDNA and NRY DNA from mother to offspring, and father to son, respectively, without the 'scrambling' effects of genetic recombination. We also presume that these genetic loci are not affected by natural selection, and that the major process responsible for changes in base pairs has been mutation (which can be calculated).

The smaller effective population size of the NRY and mtDNA enhances the consequences of drift and founder effect relative to the autosomes, making NRY and mtDNA variation a potentially sensitive index of population composition. However, these biologically plausible assumptions are nevertheless not concrete. For example, Rosser suggests that climatic conditions may affect the fertility of certain lineages.

Even more problematic, however, is the underlying mutation rate used by the geneticists. They often use different mutation rates, and therefore studies frequently arrive at vastly different conclusions. Moroever, NRY and mtDNA may be so susceptible to drift that some ancient patterns may have become obscured over time. Another implicit assumption is that population genealogies are approximated by allele genealogies. Barbujani points out that this only holds if population groups develop from a genetically monomorphic set of founders. However, Barbujani argues that there is no reason to believe that Europe was colonized by monomorphic populations. This would result in an overestimation of haplogroup age, thus falsely extending the demographic history of Europe into the Late Paleolithic rather than the Neolithic era. (See also Genetic drift, Founder effect, Population bottleneck.) Greater certainty about chronology may be obtained from studies of ancient DNA (see below), but so far these have been comparatively few.

Whereas Y-DNA and mtDNA haplogroups represent but a small component of a person’s DNA pool, autosomal DNA has the advantage of containing hundreds and thousands of examinable genetic loci, thus giving a more complete picture of genetic composition. However, descent relationships can only to be determined on a statistical basis because autosomal DNA undergoes recombination. A single chromosome can record multiple histories; a separate history for each gene. Autosomal studies are much more reliable for showing the relationships between existing populations but do not offer the possibilities for unraveling their histories in the same way as mtDNA and NRY DNA studies promise, despite their many complications.

Genetic studies operate on numerous assumptions and suffer from usual methodological limitations such as selection bias and confounding. Phenomenon like genetic drift, foundation and bottleneck effects cause large errors, particularly in haplogroup studies. Furthermore, no matter how accurate the methodology, conclusions derived from such studies are ultimately compiled on the basis of how the author envisages their data fits with established archaeological or linguistic theories.

Read more about this topic:  Genetic History Of Europe

Famous quotes containing the words genetic and/or studies:

    What strikes many twin researchers now is not how much identical twins are alike, but rather how different they are, given the same genetic makeup....Multiples don’t walk around in lockstep, talking in unison, thinking identical thoughts. The bond for normal twins, whether they are identical or fraternal, is based on how they, as individuals who are keenly aware of the differences between them, learn to relate to one another.
    Pamela Patrick Novotny (20th century)

    His life itself passes deeper in nature than the studies of the naturalist penetrate; himself a subject for the naturalist. The latter raises the moss and bark gently with his knife in search of insects; the former lays open logs to their core with his axe, and moss and bark fly far and wide. He gets his living by barking trees. Such a man has some right to fish, and I love to see nature carried out in him.
    Henry David Thoreau (1817–1862)