Genetic Assimilation

Genetic assimilation is a process by which a phenotype originally produced in response to an environmental condition, such as exposure to a teratogen, later becomes genetically encoded via artificial selection or natural selection. Despite superficial appearances, this does not require the inheritance of acquired characters, although epigenetic inheritance could potentially influence the result. Genetic assimilation is merely a method of overcoming the barrier to selection imposed by genetic canalization of developmental pathways.


If there is no canalization of a developmental pathway, genetic variation of pathway components results in a continuous spectrum of phenotypes, often distributed in a bell curve. In these cases artificial selection can be done in a straightforward way, by choosing offspring from one end of the curve and using them to breed the next generation. However, when a pathway is strongly canalized, all of the individuals, except perhaps a few at the furthest extreme of the bell curve, physically look the same regardless of their genotype under normal environmental circumstances. However, a given genetic make-up does not predetermine the same outcome under all possible circumstances; instead, it determines a norm of reaction that varies with the environment (phenotypic plasticity). There may be a way to stress an organism so that canalization breaks down, and many aberrant individuals can be selected for further breeding; these are said to phenocopy the desired genetic trait. With several generations of artificial selection in this manner, perhaps aided by mutagenesis, the genetic variation can be reduced to that of the furthest extreme of the original population, until canalization is overwhelmed even under normal environmental conditions. At this point the environmentally induced abnormality has been duplicated genetically.


The classic example of genetic assimilation was a 1953 experiment by C. H. Waddington, in which Drosophila embryos were exposed to ether, producing a bithorax-like phenotype (a homeotic change) Flies which developed halteres with wing-like characteristics were chosen for breeding for 20 generations, by which point the phenotype could be seen without ether treatment.

Read more about Genetic Assimilation:  Genetic Assimilation in Natural Selection, Related Concepts

Famous quotes containing the word genetic:

    We cannot think of a legitimate argument why ... whites and blacks need be affected by the knowledge that an aggregate difference in measured intelligence is genetic instead of environmental.... Given a chance, each clan ... will encounter the world with confidence in its own worth and, most importantly, will be unconcerned about comparing its accomplishments line-by-line with those of any other clan. This is wise ethnocentricism.
    Richard Herrnstein (1930–1994)