GC-content - Application in Systematics

Application in Systematics

GC content is found to be variable with different organisms, the process of which is envisaged to be contributed to by variation in selection, mutational bias, and biased recombination-associated DNA repair. The species problem in prokaryotic taxonomy has led to various suggestions in classifying bacteria, and the ad hoc committee on reconciliation of approaches to bacterial systematics has recommended use of GC ratios in higher level hierarchical classification. For example, the Actinobacteria are characterised as "high GC-content bacteria". In Streptomyces coelicolor A3(2), GC content is 72%. The GC-content of Yeast (Saccharomyces cerevisiae) is 38%, and that of another common model organism, Thale Cress (Arabidopsis thaliana), is 36%. Because of the nature of the genetic code, it is virtually impossible for an organism to have a genome with a GC-content approaching either 0% or 100%. A species with an extremely low GC-content is Plasmodium falciparum (GC% = ~20%), and it is usually common to refer to such examples as being AT-rich instead of GC-poor.

Read more about this topic:  GC-content

Famous quotes containing the word application:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)