Gartons Agricultural Plant Breeders - The Garton System of Plant Breeding

The Garton System of Plant Breeding

These Explanatory Notes come from the Gartons Seed Catalogue for Spring 1900:

To those who are not acquainted with the botanical construction of plants it may be well to explain that plants possess generative organs, which correspond to those of the male and female in the animal kingdom. In the animal kingdom, progeny is derived from the mating of different animals of the same breed; in the vegetable kingdom the rule is that the seed is produced through the agency of the generative organs growing together on the same plant. Prior to the commencement of the work initiated by us and carried on during the past 20 years, which has led to the production of our New and Improved Breeds of agricultural plants, it was a recognised belief that many farm plants in the production of their seed were more or less cross-fertilised. The results of our experiments however have proved that such was not the case but that constant in-and-in breeding was the rule. Where such in-and-in breeding takes place the results are governed by the same natural laws as the in-and-in breeding of animals. In the production of New Breeds of animals the rule followed is to mate two animals of distinct breeds. The progeny, when fixity of type has been secured, constitutes a New Breed. Under our system of plant breeding we carry the mating of varieties or breeds far beyond what is practised in the animal kingdom. In the first instance we mate varieties and also what were formerly regarded as distinct species of the same genera, and after fixation, the progeny by these combinations are further mated together. A further extension of our system which is in itself unique and instructive, is the mating of uncultivated indigenous plants of the same Natural Order as the cultivated varieties. From such combinations most valuable results have been obtained. For example In Southern Asia there exists a species of wheat botanically known as Triticum spelta. In some districts it is looked upon as an indigenous weed infesting the cultivated crops of wheat. Under no climatic conditions does the grain of this species shed its seed when ripe, and even in threshing it is not possible to separate the grains, as the spikelets break off at the bases of the glumes, the grains remaining firmly enclosed between the chaff scales. By mating the varieties of this species with cultivated varieties, new breeds have been produced which will under no conditions shed their seed when ripe, but which thresh out a perfectly clean sample with a much heavier yield per acre than common wheat. In China there is an indigenous species of oat botanically known as Avena nuda or naked oat. The peculiar feature of this species is that the grains (which are very small) grow without any husk, being protected only by the chaff. The habit of the plant is likewise quite unique, four or five grains being suspended upon a thread-like filament about half an inch long. The mating of this species with cultivated varieties has produced new breeds giving yields 50 to 100 per cent. heavier than the original cultivated parents, with a corresponding decrease in the thickness of the skin. The wild or land oat, Avena fatua, of Great Britain has likewise been used with marked success in the production of new breeds in conjunction with the cultivated varieties. In the wild oat there is hardiness of constitution, vigour, strength of straw, and remarkable fertility. All these qualities have been retained in the new breeds produced. Another part of our system is the improvement of existing varieties of agricultural plants. The method is similar to that adopted by the breeder of stock for the improvement of his animals, when fresh blood of the same breed is introduced from some other herd. By crossing two distinct plants of the same variety the resulting progeny is more vigorous and robust in constitution, whilst the habit and individual character of the variety is maintained.

A year later, these Explanatory Notes come from the Gartons Seed Catalogue for Spring 1901:

FOR over 20 years the work of cross-fertilising crop plants, with the object of producing New and Improved Breeds, has been carried on at Newton-le-Willows in Lancashire. It has there for the first time been demonstrated to Scientific Botanists as well as to Agriculturists that all the corn crops (cereals) and nearly all the other common crops of the farm are self fertilising. In other words, each individual plant provides the pollen which is required in the process of producing seed, to fertilise the female organs of its own flowers. This natural process results in a perfect system of in-breeding which has been going on for an indefinite period, making it possible to grow the different varieties of crops of the same kind in close proximity to each other, and even as mixed crops without any danger of crosses being produced. If crossing could have occurred in nature it would have been quite impossible to maintain the purity of any variety of crop plant for more than a year or two. As in the Animal Kingdom, the in-breeding of plants tends to the decrease of constitutional vigour, consequently when cross-fertilisation is practised the size and vigour of the selected progeny are increased in a remarkable degree. Although the natural laws which govern the Animal and the Vegetable Kingdoms bear a very strong resemblance to each other, further points can be realised and greater progress can be made in a limited time with plants than with animals under a system of cross breeding. Not only have varieties of a given species, but what were formerly regarded as distinct species belonging to the same genus, been successfully mated. The tendency to sterility in their progeny is overcome by introducing pollen from one or other '01' the original plants, it being the male organs of reproduction that are liable to be absent or defective in the progeny of two extremely divergent parent plants. Many varieties as well as species can thus be blended in the formation of a new breed, but as it is necessary to secure fixity of type in every cross bred plant before it is again used for crossing, the labour and care involved are very considerable. Attempts at the production of first crosses are not new, as these have been practised for many years by experimenters in the same field, who however stopped short of the point at which the Garton System achieved its greatest results, viz. by compound or multiple crossing. This further stage of the work of cross fertilisation leads to a thorough dislocation of the usual course of the law of inheritance by which "like produces like." In the wilderness of uncertainty and confusion which follows and in which the great majority of the progeny are found to be abortive or inferior, a few choice specimens appear which are grown for a number of years until fixity of type has been secured. These superior and selected specimens are adopted as suitable for cultivation, and a number of them are described in this Catalogue and offered to the public as much superior to the old varieties from which they were derived by the Garton System of Plant Breeding. In making the selections the large quantity and superior quality of the grain, together with great standing power in the straw have been the chief characteristics aimed at, and if these desiderata have been secured in a few of the new breeds to the detriment of the habit of "tillering," the difficulty is readily overcome by providing a liberal seeding. Some of the most striking and valuable results have been achieved by introducing as progenitors, certain weeds belonging to the same natural order of plants as the cultivated parents. For example, an inferior variety of "spelt" wheat Triticum spelta from Southern Asia, has been employed with excellent results to introduce strength of gluten to the grain, and large yielding and standing power to the crop with immunity from shedding its seed during harvest. A wild naked Oat, Avena nuda, indigenous to China has been used to produce new breeds which yield in some instances 100 per cent. more than their cultivated parents. Four or five grains are suspended in each spikelet by a thread like filament about half-an-inch long. This peculiar habit of the plant 'has been extended in the progeny and an' accompanying illustration shows a spikelet with no fewer than 14 grains in it. The hardiness of constitution, standing power of straw, and remarkable fertility of the wild or land oat, Avena fatua, of Great Britain have been successfully introduced, but not without many difficulties, into some of the new breeds. Some progress has also been made with the improvement of existing varieties of Agricultural plants by introducing pollen from plants of the same variety to increase the vigour of the plant without materially altering its general characteristics.

Read more about this topic:  Gartons Agricultural Plant Breeders

Famous quotes containing the words system, plant and/or breeding:

    I have no concern with any economic criticisms of the communist system; I cannot enquire into whether the abolition of private property is expedient or advantageous. But I am able to recognize that the psychological premises on which the system is based are an untenable illusion. In abolishing private property we deprive the human love of aggression of one of its instruments ... but we have in no way altered the differences in power and influence which are misused by aggressiveness.
    Sigmund Freud (1856–1939)

    The North American system only wants to consider the positive aspects of reality. Men and women are subjected from childhood to an inexorable process of adaptation; certain principles, contained in brief formulas are endlessly repeated by the press, the radio, the churches, and the schools, and by those kindly, sinister beings, the North American mothers and wives. A person imprisoned by these schemes is like a plant in a flowerpot too small for it: he cannot grow or mature.
    Octavio Paz (b. 1914)

    Courtesy is breeding. Breeding is an excellent thing. Always remember that.
    Lillian Hellman (1905–1984)