Gamma-ray Astronomy - Early History

Early History

Long before experiments could detect gamma rays emitted by cosmic sources, scientists had known that the universe should be producing these photons. Work by Eugene Feenberg and Henry Primakoff in 1948, Sachio Hayakawa and I.B. Hutchinson in 1952, and, especially, Philip Morrison in 1958 had led scientists to believe that a number of different processes which were occurring in the universe would result in gamma-ray emission. These processes included cosmic ray interactions with interstellar gas, supernova explosions, and interactions of energetic electrons with magnetic fields. However, it was not until the 1960s that our ability to actually detect these emissions came to pass.

Most gamma rays coming from space are absorbed by the Earth's atmosphere, so gamma-ray astronomy could not develop until it was possible to get detectors above all or most of the atmosphere using balloons and spacecraft. The first gamma-ray telescope carried into orbit, on the Explorer 11 satellite in 1961, picked up fewer than 100 cosmic gamma-ray photons. They appeared to come from all directions in the Universe, implying some sort of uniform "gamma-ray background". Such a background would be expected from the interaction of cosmic rays (very energetic charged particles in space) with interstellar gas.

The first true astrophysical gamma-ray sources were solar flares, which revealed the strong 2.223 MeV line predicted by Morrison. This line results from the formation of deuterium via the union of a neutron and proton; in a solar flare the neutrons appear as secondaries from interactions of high-energy ions accelerated in the flare process. These first gamma-ray line observations were from OSO-3, OSO-7, and the Solar Maximum Mission, the latter spacecraft launched in 1980. The solar observations inspired theoretical work by Reuven Ramaty and others.

Significant gamma-ray emission from our galaxy was first detected in 1967 by the detector aboard the OSO-3 satellite. It detected 621 events attributable to cosmic gamma rays. However, the field of gamma-ray astronomy took great leaps forward with the SAS-2 (1972) and the COS-B (1975–1982) satellites. These two satellites provided an exciting view into the high-energy universe (sometimes called the 'violent' universe, because the kinds of events in space that produce gamma rays tend to be high-speed collisions and similar processes). They confirmed the earlier findings of the gamma-ray background, produced the first detailed map of the sky at gamma-ray wavelengths, and detected a number of point sources. However the resolution of the instruments was insufficient to identify most of these point sources with specific visible stars or stellar systems.

Read more about this topic:  Gamma-ray Astronomy

Famous quotes containing the words early and/or history:

    Our instructed vagrancy, which has hardly time to linger by the hedgerows, but runs away early to the tropics, and is at home with palms and banyans—which is nourished on books of travel, and stretches the theatre of its imagination to the Zambesi.
    George Eliot [Mary Ann (or Marian)

    Psychology keeps trying to vindicate human nature. History keeps undermining the effort.
    Mason Cooley (b. 1927)