Free Module - Construction

Construction

Given a set, we can construct a free -module over . The module is simply the direct sum of copies of, often denoted . We give a concrete realization of this direct sum, denoted by, as follows:

  • Carrier: contains the functions such that for cofinitely many (all but finitely many) .


  • Addition: for two elements, we define by .


  • Inverse: for, we define by .


  • Scalar multiplication: for, we define by .


A basis for is given by the set where

(a variant of the Kronecker delta and a particular case of the indicator function, for the set ).

Define the mapping by . This mapping gives a bijection between and the basis vectors . We can thus identify these sets. Thus may be considered as a linearly independent basis for .

Read more about this topic:  Free Module

Famous quotes containing the word construction:

    Striving toward a goal puts a more pleasing construction on our advance toward death.
    Mason Cooley (b. 1927)

    The construction of life is at present in the power of facts far more than convictions.
    Walter Benjamin (1892–1940)

    When the leaders choose to make themselves bidders at an auction of popularity, their talents, in the construction of the state, will be of no service. They will become flatterers instead of legislators; the instruments, not the guides, of the people.
    Edmund Burke (1729–1797)