Frame-dragging

Frame-dragging

Einstein's general theory of relativity predicts that non-static, stationary mass-energy distributions affect spacetime in a peculiar way giving rise to a phenomenon usually known as frame-dragging. The first frame-dragging effect was derived in 1918, in the framework of general relativity, by the Austrian physicists Josef Lense and Hans Thirring, and is also known as the Lense–Thirring effect. They predicted that the rotation of a massive object would distort the spacetime metric, making the orbit of a nearby test particle precess. This does not happen in Newtonian mechanics for which the gravitational field of a body depends only on its mass, not on its rotation. The Lense–Thirring effect is very small—about one part in a few trillion. To detect it, it is necessary to examine a very massive object, or build an instrument that is very sensitive. More generally, the subject of effects caused by mass–energy currents is known as gravitomagnetism, in analogy with classical electromagnetism.

Read more about Frame-dragging:  Frame Dragging Effects, Astronomical Evidence, Mathematical Derivation of Frame-dragging