Formula One Car - Brakes

Brakes

Disc brakes consist of a rotor and caliper at each wheel. Carbon composite rotors (introduced by the Brabham team in 1976) are used instead of steel or cast iron because of their superior frictional, thermal, and anti-warping properties, as well as significant weight savings. These brakes are designed and manufactured to work in extreme temperatures, up to 1,000 degrees Celsius (1800 °F). The driver can control brake force distribution fore and aft to compensate for changes in track conditions or fuel load. Regulations specify this control must be mechanical, not electronic, thus it is typically operated by a lever inside the cockpit as opposed to a control on the steering wheel.

An average F1 car can decelerate from 100 to 0 km/h (62 to 0 mph) in about 15 meters (48 ft), compared with a 2009 BMW M3, which needs 31 meters (102 ft). When braking from higher speeds, aerodynamic downforce enables tremendous deceleration: 4.5 g to 5.0 g (44 to 49 m/s2), and up to 5.5 g (54 m/s2) at the high-speed circuits such as the Circuit Gilles Villeneuve (Canadian GP) and the Autodromo Nazionale Monza (Italian GP). This contrasts with 1.0 g to 1.5 g (10 to 15 m/s2) for the best sports cars (the Bugatti Veyron is claimed to be able to brake at 1.3 g). An F1 car can brake from 200 km/h (124 mph) to a complete stop in just 2.21 seconds, using only 65 metres (213 ft).

Read more about this topic:  Formula One Car

Famous quotes containing the word brakes:

    What blazed ahead of you? A faked road block?
    The red lamp swung, the sudden brakes and stalling
    Engine, voices, heads hooded and the cold-nosed gun?
    Seamus Heaney (b. 1939)

    There is a limit to the application of democratic methods. You can inquire of all the passengers as to what type of car they like to ride in, but it is impossible to question them as to whether to apply the brakes when the train is at full speed and accident threatens.
    Leon Trotsky (1879–1940)