Forcing (mathematics) - The Countable Chain Condition

The Countable Chain Condition

An antichain A of P is a subset such that if p and q are in A, then p and q are incompatible (written pq), meaning there is no r in P such that rp and rq. In the Borel sets example, incompatibility means pq has measure zero. In the finite partial functions example, incompatibility means that pq is not a function, in other words, p and q assign different values to some domain input.

P satisfies the countable chain condition (c.c.c.) if every antichain in P is countable. (The name, which is obviously inappropriate, is a holdover from older terminology. Some mathematicians write "c.a.c." for "countable antichain condition".)

It is easy to see that Bor(I) satisfies the c.c.c., because the measures add up to at most 1. Fin(E,2) is also c.c.c., but the proof is more difficult.

Given an uncountable subfamily W ⊆ Fin(E,2), shrink W to an uncountable subfamily W0 of sets of size n, for some n<ω. If p(e1)=b1 for uncountably many pW0, shrink to this uncountable subfamily W1, and repeat, getting a finite set { (e1,b1), …, (ek,bk) }, and an uncountable family Wk of incompatible conditions of size nk such that every e is in at most countably many dom(p) for pWk. Now pick an arbitrary pWk, and pick from Wk any q that is not one of the countably many members that have a domain member in common with p. Then p ∪ { (e1,b1), …, (ek,bk) } and q ∪ { (e1,b1), …, (ek,bk) } are compatible, so W is not an antichain. In other words, Fin(E,2) antichains are countable.

The importance of antichains in forcing is that for most purposes, dense sets and maximal antichains are equivalent. A maximal antichain A is one that cannot be extended and still be an antichain. This means every element of pP is compatible with some member of A. Their existence follows from Zorn's lemma. Given a maximal antichain A, let D = { p : pq, some qA }. D is dense, and GD≠0 if and only if GA≠0. Conversely, given a dense set D, Zorn's lemma shows there exists a maximal antichain AD, and then GD≠0 if and only if GA≠0.

Assume P is c.c.c. Given x,yV, with f:xy in V, one can approximate f inside V as follows. Let u be a name for f (by the definition of V) and let p be a condition which forces u to be a function from x to y. Define a function F whose domain is x by F(a) = { b : ∃ qp, q forces u(aˇ) = bˇ }. By definability of forcing, this definition makes sense within V. By coherence of forcing, different b’s come from incompatible p’s. By c.c.c., F(a) is countable.

In summary, f is unknown in V, since it depends on G, but it is not wildly unknown for a c.c.c. forcing. One can identify a countable set of guesses for what the value of f is at any input, independent of G.

This has the following very important consequence. If in V, f:α→β is a surjection from one infinite ordinal to another, then there is a surjection g:ω×α→β in V and consequently a surjection h:α→β in V. In particular, cardinals cannot collapse. The conclusion is that 2ℵ₀ ≥ ℵ2 in V.

Read more about this topic:  Forcing (mathematics)

Famous quotes containing the words chain and/or condition:

    The years seemed to stretch before her like the land: spring, summer, autumn, winter, spring; always the same patient fields, the patient little trees, the patient lives; always the same yearning; the same pulling at the chain—until the instinct to live had torn itself and bled and weakened for the last time, until the chain secured a dead woman, who might cautiously be released.
    Willa Cather (1873–1947)

    No theory is good unless it permits, not rest, but the greatest work. No theory is good except on condition that one use it to go on beyond.
    André Gide (1869–1951)