Flight Data Recorder - History

History

One of the earliest attempts to record flight data was made by François Hussenot and Paul Beaudouin in 1939 at the Marignane flight test center, France, with their "type HB" flight recorder. This was an essentially photograph-based device, because the record was made on a scrolling eight meters long by 88 milimeters wide photographic film. The latent image was made by a thin ray of light deviated by a mirror tilted according to the magnitude of the data to record (altitude, speed, etc.). A pre-production run of 25 "HB" recorders was ordered in 1941 and HB recorders remained in use in French test centers well into the seventies In 1947, Hussenot, Beaudouin and associate Marcel Ramolfo founded the Société Française d'Instruments de Mesure (SFIM) to market their design. This company went on to become a major supplier of data recorders, used not only aboard aircraft but also trains and other vehicles. SFIM is today part of the Safran group and is still present on the flight recorder market.

The advantage of the film technology was that it could be easily developed afterwards and provides a durable, visual feedback of the flight parameters without needing any playback device. On the other hand, unlike magnetic bands or later flash memory-based technology, a photographic film cannot be erased and recycled, and so it must be changed periodically. As such, this technology was reserved for one-shot uses, mostly during planned test flights; and it was not mounted aboard civilian aircraft during routine commercial flights. Also, the cockpit conversation was not recorded.

Another form of flight data recorder was developed in the UK during World War II. Len Harrison and Vic Husband developed a unit that could withstand a crash and fire to keep the flight data intact. This unit used copper foil as the recording medium with various styli indicating various instruments / aircraft controls which indented the copper foil. The copper foil was periodically advanced at set periods of time therefore giving a history of the instruments /control settings of the aircraft. This unit was developed at Farnborough for the Ministry of Aircraft Production. At the wars end the Ministry got Harrison and Husband to sign over their invention to them and the Ministry patented it under British patent 19330/45. This unit was the forerunner of today's black boxes being able to withstand conditions that aircrew could not.

The first prototype coupled FDR/CVR designed with civilian aircraft in mind, for explicit post-crash examination purposes, was produced in 1956 by Dr. David Warren of the Defence Science and Technology Organisation's Aeronautical Research Laboratories in Melbourne, Australia. In 1953 and 1954, a series of fatal incidents involving the de Havilland Comet prompted the grounding of the entire fleet pending an investigation. Dr. Warren, a chemist specializing in aircraft fuels, was involved in a professional committee discussing the possible causes. Since there had been neither witnesses nor survivors, Dr. Warren conceived of a crash-survivable method to record the flight crew's conversation (and other pre-crash data), reasoning they would greatly assist in determining a cause and enabling the prevention of future, avoidable accidents of the same type.

Warren published a 1954 report entitled "A Device for Assisting Investigation into Aircraft Accidents" and built a 1957 prototype FDR called "The ARL Flight Memory Unit". However, aviation authorities from around the world were largely uninterested. This changed in 1958 when Sir Robert Hardingham, the Secretary of the British Air Registration Board, visited the ARL and was introduced to Warren.

The Aeronautical Research Laboratory allocated Dr. Warren an engineering team to develop the prototype to airborne stage. The team, consisting of electronics engineers Lane Sear, Wally Boswell and Ken Fraser developed a working design incorporating a fire and shockproof case, a reliable system for encoding and recording aircraft instrument readings and voice on one wire, and a ground-based decoding device. The ARL system became the "Red Egg", made by the British firm of S. Davall & Son. The "Red Egg" got its name from its shape and bright red color. In 1960, after the crash of an aircraft at Mackay (Queensland), the inquiry judge strongly recommended that flight recorders be installed in all airliners. Australia then became the first country in the world to make cockpit-voice recording compulsory.

The origin of the term "Black Box" is uncertain. One explanation comes from the early film-based design of flight data recorders, which required the inside of the recorder to be perfectly dark to prevent light leaks from corrupting the record, as in a photographer's darkroom. Another explanation of the "black box" name came from a meeting about Warren's "Red Egg", when afterwards a journalist told Dr. Warren, "This is a wonderful black box." The unit itself was based on an EMI Minifon wire recorder (originally a 1950s espionage gadget from the west-German manufacterer Protona Monske) fitted into a perspex box firmly screwed together.

Read more about this topic:  Flight Data Recorder

Famous quotes containing the word history:

    Yet poetry, though the last and finest result, is a natural fruit. As naturally as the oak bears an acorn, and the vine a gourd, man bears a poem, either spoken or done. It is the chief and most memorable success, for history is but a prose narrative of poetic deeds.
    Henry David Thoreau (1817–1862)

    This is the greatest week in the history of the world since the Creation, because as a result of what happened in this week, the world is bigger, infinitely.
    Richard M. Nixon (1913–1995)

    I am not a literary man.... I am a man of science, and I am interested in that branch of Anthropology which deals with the history of human speech.
    —J.A.H. (James Augustus Henry)