Fission Track Dating

Fission track dating is a radiometric dating technique based on analyses of the damage trails, or tracks, left by fission fragments in certain uranium-bearing minerals and glasses. Fission-track dating is a relatively simple, but robust method of radiometric dating that has made a significant impact on understanding the thermal history of continental crust, the timing of volcanic events, and the source and age of different archeological artifacts. The method involves using the number of fission events produced from the spontaneous decay of uranium-238 in common accessory minerals to date the time of rock cooling below closure temperature. Fission tracks are sensitive to heat, and therefore the technique is useful at unraveling the thermal evolution of rocks and minerals. Most current research using fission tracks is aimed at: a) understanding the evolution of mountain belts; b) determining the source or provenance of sediments; c) studying the thermal evolution of basins; d) determining the age of poorly dated strata; and e) dating and provenance determination of archeological artifacts.

Read more about Fission Track Dating:  Method, Applications

Famous quotes containing the words fission, track and/or dating:

    The pace of science forces the pace of technique. Theoretical physics forces atomic energy on us; the successful production of the fission bomb forces upon us the manufacture of the hydrogen bomb. We do not choose our problems, we do not choose our products; we are pushed, we are forced—by what? By a system which has no purpose and goal transcending it, and which makes man its appendix.
    Erich Fromm (1900–1980)

    What is the use of going right over the old track again? There is an adder in the path which your own feet have worn. You must make tracks into the Unknown.
    Henry David Thoreau (1817–1862)

    We go on dating from Cold Fridays and Great Snows; but a little colder Friday, or greater snow would put a period to man’s existence on the globe.
    Henry David Thoreau (1817–1862)