Filter (mathematics) - Filter On A Set

Filter On A Set

A special case of a filter is a filter defined on a set. Given a set S, a partial ordering ⊆ can be defined on the powerset P(S) by subset inclusion, turning (P(S),⊆) into a lattice. Define a filter F on S as a subset of P(S) with the following properties:

  1. S is in F. (F is non-empty)
  2. The empty set is not in F. (F is proper)
  3. If A and B are in F, then so is their intersection. (F is closed under finite meets)
  4. If A is in F and A is a subset of B, then B is in F, for all subsets B of S. (F is an upper set)

The first three properties imply that a filter on a set has the finite intersection property. Note that with this definition, a filter on a set is indeed a filter; in fact, it is a proper filter. Because of this, sometimes this is called a proper filter on a set; however, as long as the set context is clear, the shorter name is sufficient.

A filter base (or filter basis) is a subset B of P(S) with the following properties:

  1. The intersection of any two sets of B contains a set of B
  2. B is non-empty and the empty set is not in B

Given a filter base B, one may obtain a (proper) filter by including all sets of P(S) which contain a set of B. The resulting filter is said to be generated by or spanned by filter base B. Every filter is also a filter base, so the process of passing from filter base to filter may be viewed as a sort of completion.

If B and C are two filter bases on S, one says C is finer than B (or that C is a refinement of B) if for each B0B, there is a C0C such that C0B0.

  • For filter bases B and C, if B is finer than C and C is finer than B, then B and C are said to be equivalent filter bases. Two filter bases are equivalent if and only if the filters they generate are equal.
  • For filter bases A, B, and C, if A is finer than B and B is finer than C then A is finer than C. Thus the refinement relation is a preorder on the set of filter bases, and the passage from filter base to filter is an instance of passing from a preordering to the associated partial ordering.

Given a subset T of P(S) we can ask whether there exists a smallest filter F containing T. Such a filter exists if and only if the finite intersection of subsets of T is non-empty. We call T a subbase of F and say F is generated by T. F can be constructed by taking all finite intersections of T which is then filter base for F.

Read more about this topic:  Filter (mathematics)

Famous quotes containing the word set:

    Anyone who seeks for the true causes of miracles, and strives to understand natural phenomena as an intelligent being, and not to gaze at them like a fool, is set down and denounced as an impious heretic by those, whom the masses adore as the interpreters of nature and the gods. Such persons know that, with the removal of ignorance, the wonder which forms their only available means for proving and preserving their authority would vanish also.
    Baruch (Benedict)