Filled Julia Set - Relation Between Julia, Filled-in Julia Set and Attractive Basin of Infinity

Relation Between Julia, Filled-in Julia Set and Attractive Basin of Infinity

The Julia set is the common boundary of the filled-in Julia set and the attractive basin of infinity



where :
denotes the attractive basin of infinity = exterior of filled-in Julia set = set of escaping points for

If the filled-in Julia set has no interior then the Julia set coincides with the filled-in Julia set. This happens when all the critical points of are pre-periodic. Such critical points are often called Misiurewicz points.

Read more about this topic:  Filled Julia Set

Famous quotes containing the words relation, julia, set, attractive and/or infinity:

    A theory of the middle class: that it is not to be determined by its financial situation but rather by its relation to government. That is, one could shade down from an actual ruling or governing class to a class hopelessly out of relation to government, thinking of gov’t as beyond its control, of itself as wholly controlled by gov’t. Somewhere in between and in gradations is the group that has the sense that gov’t exists for it, and shapes its consciousness accordingly.
    Lionel Trilling (1905–1975)

    Life must be something more than dilettante speculation.
    —Anna Julia Cooper (1859–1964)

    If nations always moved from one set of furnished rooms to another—and always into a better set—things might be easier, but the trouble is that there is no one to prepare the new rooms. The future is worse than the ocean—there is nothing there. It will be what men and circumstances make it.
    Alexander Herzen (1812–1870)

    One of the most attractive of those ancient books that I have met with is The Laws of Menu.
    Henry David Thoreau (1817–1862)

    We must not suppose that, because a man is a rational animal, he will, therefore, always act rationally; or, because he has such or such a predominant passion, that he will act invariably and consequentially in pursuit of it. No, we are complicated machines; and though we have one main spring that gives motion to the whole, we have an infinity of little wheels, which, in their turns, retard, precipitate, and sometime stop that motion.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)