Definition
Given two density matrices ρ and σ, the fidelity is defined by
By M½ of a positive semidefinite matrix M, we mean its unique positive square root given by the spectral theorem. The Euclidean inner product from the classical definition is replaced by the Hilbert-Schmidt inner product. When the states are classical, i.e. when ρ and σ commute, the definition coincides with that for probability distributions.
An equivalent definition is given by
where the norm is the trace norm (sum of the singular values). This definition has the advantage that it clearly shows that the fidelity is symmetric in its two arguments.
Notice by definition F is non-negative, and F(ρ,ρ) = 1. In the following section it will be shown that it can be no larger than 1.
In the original 1994 paper of Jozsa the name 'fidelity' was used for the quantity and this convention is often used in the literature. According to this convention 'fidelity' has a meaning of probability.
Read more about this topic: Fidelity Of Quantum States
Famous quotes containing the word definition:
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)