Fidelity of Quantum States - Definition

Definition

Given two density matrices ρ and σ, the fidelity is defined by

By M½ of a positive semidefinite matrix M, we mean its unique positive square root given by the spectral theorem. The Euclidean inner product from the classical definition is replaced by the Hilbert-Schmidt inner product. When the states are classical, i.e. when ρ and σ commute, the definition coincides with that for probability distributions.

An equivalent definition is given by

where the norm is the trace norm (sum of the singular values). This definition has the advantage that it clearly shows that the fidelity is symmetric in its two arguments.

Notice by definition F is non-negative, and F(ρ,ρ) = 1. In the following section it will be shown that it can be no larger than 1.

In the original 1994 paper of Jozsa the name 'fidelity' was used for the quantity and this convention is often used in the literature. According to this convention 'fidelity' has a meaning of probability.

Read more about this topic:  Fidelity Of Quantum States

Famous quotes containing the word definition:

    It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possess—after many mysteries—what one loves.
    François, Duc De La Rochefoucauld (1613–1680)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)