Fibroblast Growth Factor Receptor - Structure

Structure

The fibroblast growth factor receptors consist of a cellular ligand domain composed of three immunoglobulin-like domains, a single transmembrane helix domain, and an intracellular domain with tyrosine kinase activity. These receptors bind fibroblast growth factors, members of the largest family of growth factor ligands, comprising 22 members.

The natural alternate splicing of four fibroblast growth factor receptor (FGFR) genes results in the production of over 48 different isoforms of FGFR. These isoforms vary in their ligand-binding properties and kinase domains, however all share the common extracellular region composed of three immunoglobulin(Ig)-like domains (D1-D3), and thus belong to the immunoglobulin superfamily.

The three immunoglobin(Ig)-like domains - D1, D2, and D3 - present a stretch of acidic amino acids ("the acid box") between D1 and D2. This "acid box" can participate in the regulation of FGF binding to the FGFR. Immunoglobulin-like domains D2 and D3 are sufficient for FGF binding. Each receptor can be activated by several FGFs. In many cases, the FGFs themselves can also activate more than one receptor (i.e., FGF-1, which binds all seven principal FGFRs). FGF-7, however, can only activate FGFR2b.

A gene for a fifth FGFR protein, FGFR5, has also been identified. In contrast to FGFRs 1-4, it lacks a cytoplasmic tyrosine kinase domain and one isoform, FGFR5γ, and only contains the extracellular domains D1 and D2. The FGFRs are known to dimerize as heterodimers and homodimers.

Read more about this topic:  Fibroblast Growth Factor Receptor

Famous quotes containing the word structure:

    I’m a Sunday School teacher, and I’ve always known that the structure of law is founded on the Christian ethic that you shall love the Lord your God and your neighbor as yourself—a very high and perfect standard. We all know the fallibility of man, and the contentions in society, as described by Reinhold Niebuhr and many others, don’t permit us to achieve perfection.
    Jimmy Carter (James Earl Carter, Jr.)

    What is the most rigorous law of our being? Growth. No smallest atom of our moral, mental, or physical structure can stand still a year. It grows—it must grow; nothing can prevent it.
    Mark Twain [Samuel Langhorne Clemens] (1835–1910)

    With sixty staring me in the face, I have developed inflammation of the sentence structure and definite hardening of the paragraphs.
    James Thurber (1894–1961)