Feynman Diagram - Nonperturbative Effects

Nonperturbative Effects

Thinking of Feynman diagrams as a perturbation series, nonperturbative effects like tunneling do not show up, because any effect which goes to zero faster than any polynomial does not affect the Taylor series. Even bound states are absent, since at any finite order particles are only exchanged a finite number of times, and to make a bound state, the binding force must last forever.

But this point of view is misleading, because the diagrams not only describe scattering, but they also are a representation of the short-distance field theory correlations. They encode not only asymptotic processes like particle scattering, they also describe the multiplication rules for fields, the operator product expansion. Nonperturbative tunneling processes involve field configurations which on average get big when the coupling constant gets small, but each configuration is a coherent superposition of particles whose local interactions are described by Feynman diagrams. When the coupling is small, these become collective processes which involve large numbers of particles, but where the interactions between each of the particles is simple.

This means that nonperturbative effects show up asymptotically in resummations of infinite classes of diagrams, and these diagrams can be locally simple. The graphs determine the local equations of motion, while the allowed large-scale configurations describe non-perturbative physics. But because Feynman propagators are nonlocal in time, translating a field process to a coherent particle language is not completely intuitive, and has only been explicitly worked out in certain special cases. In the case of nonrelativistic bound states, the Bethe-Salpeter equation describes the class of diagrams to include to describe a relativistic atom. For quantum chromodynamics, the Shifman Vainshtein Zakharov sum rules describe non-perturbatively excited long-wavelength field modes in particle language, but only in a phenomenological way.

The number of Feynman diagrams at high orders of perturbation theory is very large, because there are as many diagrams as there are graphs with a given number of nodes. Nonperturbative effects leave a signature on the way in which the number of diagrams and resummations diverge at high order. It is only because non-perturbative effects appear in hidden form in diagrams that it was possible to analyze nonperturbative effects in string theory, where in many cases a Feynman description is the only one available.

Read more about this topic:  Feynman Diagram

Famous quotes containing the word effects:

    If I had any doubts at all about the justice of my dislike for Shakespeare, that doubt vanished completely. What a crude, immoral, vulgar, and senseless work Hamlet is. The whole thing is based on pagan vengeance; the only aim is to gather together as many effects as possible; there is no rhyme or reason about it.
    Leo Tolstoy (1828–1910)