Genetic Determination of Eye Color
See also: Human genetic clusteringEye colors range from the most common color, brown, to the least common, green. Eye color is an inherited trait influenced by more than one gene. These genes are sought using associations to small changes in the genes themselves and in neighboring genes. These changes are known as single-nucleotide polymorphisms or SNPs. The actual number of genes that contribute to eye color is currently unknown, but there are a few likely candidates. A study in Rotterdam (2009) found that it was possible to predict the color of eyes with more than 90% accuracy for brown and blue, using just six SNPs. There is evidence that as much as 16 different genes could be responsible for eye color in humans; however, the main two genes associated with eye color variation are OCA2 and HERC2, both localized in Chromosome 15.
The gene OCA2 (OMIM: 203200), when in a variant form, causes the pink eye color and hypopigmentation common in human albinism. (The name of the gene is derived from the disorder it causes, oculocutaneous albinism type II.) Different SNPs within OCA2 are strongly associated with blue and green eyes as well as variations in freckling, mole counts, hair and skin tone. The polymorphisms may be in an OCA2 regulatory sequence, where they may influence the expression of the gene product, which in turn affects pigmentation. A specific mutation within the HERC2 gene, a gene that regulates OCA2 expression, is partly responsible for blue eyes. Other genes implicated in eye color variation are: SLC24A4 and TYR.
Blue eyes with a brown spot, green eyes, and gray eyes are caused by an entirely different part of the genome. As Eiberg said: "The SNP rs12913832 is found to be associated with the brown and blue eye color, but this single DNA variation cannot explain all the brown eye color variation from dark brown over hazel to blue eyes with brown spots."
Read more about this topic: Eye Color
Famous quotes containing the words genetic, eye and/or color:
“What strikes many twin researchers now is not how much identical twins are alike, but rather how different they are, given the same genetic makeup....Multiples dont walk around in lockstep, talking in unison, thinking identical thoughts. The bond for normal twins, whether they are identical or fraternal, is based on how they, as individuals who are keenly aware of the differences between them, learn to relate to one another.”
—Pamela Patrick Novotny (20th century)
“The universe is not rough-hewn, but perfect in its details. Nature will bear the closest inspection; she invites us to lay our eye level with the smallest leaf, and take an insect view of its plain. She has no interstices; every part is full of life.”
—Henry David Thoreau (18171862)
“Actors work and slaveand it is the color of your hair that can determine your fate in the end.”
—Helen Hayes (19001993)