Extreme Ultraviolet - EUV Generation

EUV Generation

Neutral atoms or condensed matter cannot emit EUV radiation. Ionization must take place first. EUV light can only be emitted by electrons which are bound to multicharged positive ions; for example, to remove an electron from a +3 charged carbon ion (three electrons already removed) requires about 65 eV. Such electrons are more tightly bound than typical valence electrons. The existence of multicharged positive ions is only possible in a hot dense plasma. Alternatively, the free electrons and ions may be generated temporarily and instantaneously by the intense electric field of a very-high-harmonic laser beam. The electrons accelerate as they return to the parent ion, releasing higher energy photons at diminished intensities, which may be in the EUV range. If the released photons constitute ionizing radiation, they will also ionize the atoms of the harmonic-generating medium, depleting the sources of higher-harmonic generation. The freed electrons escape since the electric field of the EUV light is not intense enough to drive the electrons to higher harmonics, while the parent ions are no longer as easily ionized as the originally neutral atoms. Hence, the processes of EUV generation and absorption (ionization) strongly compete against each other.

EUV light can also be emitted by free electrons orbiting a synchrotron.

Read more about this topic:  Extreme Ultraviolet

Famous quotes containing the word generation:

    I don’t want to be an alarmist, but I think that the Younger Generation is up to something.... I base my apprehension on nothing more definite than the fact that they are always coming in and going out of the house, without any apparent reason.
    Robert Benchley (1889–1945)