In number theory, an Euler product is an expansion of a Dirichlet series into an infinite product indexed by prime numbers. The name arose from the case of the Riemann zeta-function, where such a product representation was proved by Leonhard Euler.
Read more about Euler Product: Definition, Convergence, Examples, Notable Constants
Famous quotes containing the word product:
“[The political mind] is a strange mixture of vanity and timidity, of an obsequious attitude at one time and a delusion of grandeur at another time. The political mind is the product of men in public life who have been twice spoiled. They have been spoiled with praise and they have been spoiled with abuse.”
—Calvin Coolidge (18721933)