Euclidean Plane Geometry

Euclidean Plane Geometry

Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his textbook on geometry: the Elements. Euclid's method consists in assuming a small set of intuitively appealing axioms, and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated by earlier mathematicians, Euclid was the first to show how these propositions could fit into a comprehensive deductive and logical system. The Elements begins with plane geometry, still taught in secondary school as the first axiomatic system and the first examples of formal proof. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, couched in geometrical language.

For over two thousand years, the adjective "Euclidean" was unnecessary because no other sort of geometry had been conceived. Euclid's axioms seemed so intuitively obvious (with the possible exception of the parallel postulate) that any theorem proved from them was deemed true in an absolute, often metaphysical, sense. Today, however, many other self-consistent non-Euclidean geometries are known, the first ones having been discovered in the early 19th century. An implication of Einstein's theory of general relativity is that Euclidean space is a good approximation to the properties of physical space only where the gravitational field is weak.

Read more about Euclidean Plane Geometry:  The Elements, Methods of Proof, System of Measurement and Arithmetic, Some Important or Well Known Results, Applications, As A Description of The Structure of Space, Logical Basis

Famous quotes containing the words plane and/or geometry:

    with the plane nowhere and her body taking by the throat
    The undying cry of the void falling living beginning to be something
    That no one has ever been and lived through screaming without enough air
    James Dickey (b. 1923)

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)