Enzyme Inhibitor - Discovery and Design of Inhibitors

Discovery and Design of Inhibitors

New drugs are the products of a long drug development process, the first step of which is often the discovery of a new enzyme inhibitor. In the past the only way to discover these new inhibitors was by trial and error: screening huge libraries of compounds against a target enzyme and hoping that some useful leads would emerge. This brute force approach is still successful and has even been extended by combinatorial chemistry approaches that quickly produce large numbers of novel compounds and high-throughput screening technology to rapidly screen these huge chemical libraries for useful inhibitors.

More recently, an alternative approach has been applied: rational drug design uses the three-dimensional structure of an enzyme's active site to predict which molecules might be inhibitors. These predictions are then tested and one of these tested compounds may be a novel inhibitor. This new inhibitor is then used to try to obtain a structure of the enzyme in an inhibitor/enzyme complex to show how the molecule is binding to the active site, allowing changes to be made to the inhibitor to try to optimise binding. This test and improve cycle is then repeated until a sufficiently potent inhibitor is produced. Computer-based methods of predicting the affinity of an inhibitor for an enzyme are also being developed, such as molecular docking and molecular mechanics.

Read more about this topic:  Enzyme Inhibitor

Famous quotes containing the words discovery and/or design:

    The discovery of Pennsylvania’s coal and iron was the deathblow to Allaire. The works were moved to Pennsylvania so hurriedly that for years pianos and the larger pieces of furniture stood in the deserted houses.
    —For the State of New Jersey, U.S. public relief program (1935-1943)

    A good scientist is a person with original ideas. A good engineer is a person who makes a design that works with as few original ideas as possible. There are no prima donnas in engineering.
    Freeman Dyson (b. 1923)