Electrolysis of Water - Electrolyte Selection

Electrolyte Selection

If the above described processes occur in pure water, H+ cations will accumulate at the anode and OH− anions will accumulate at the cathode. This can be verified by adding a pH indicator to the water: the water near the anode is acidic while the water near the cathode is basic. The negative hydroxyl ions that approach the anode mostly combine with the positive hydronium ions (H3O+) to form water. The positive hydronium ions that approach the negative cathode mostly combine with negative hydroxyl ions to form water. Relatively few hydronium (hydroxyl) ions reach the cathode (anode). This can cause a concentration overpotential at both electrodes.

Pure water is a fairly good insulator since it has a low autoionization, Kw = 1.0 x 10−14 at room temperature and thus pure water conducts current poorly, 0.055 µS·cm−1. Unless a very large potential is applied to cause an increase in the autoionization of water the electrolysis of pure water proceeds very slowly limited by the overall conductivity.

If a water-soluble electrolyte is added, the conductivity of the water rises considerably. The electrolyte disassociates into cations and anions; the anions rush towards the anode and neutralize the buildup of positively charged H+ there; similarly, the cations rush towards the cathode and neutralize the buildup of negatively charged OH− there. This allows the continued flow of electricity.

Care must be taken in choosing an electrolyte, since an anion from the electrolyte is in competition with the hydroxide ions to give up an electron. An electrolyte anion with less standard electrode potential than hydroxide will be oxidized instead of the hydroxide, and no oxygen gas will be produced. A cation with a greater standard electrode potential than a hydrogen ion will be reduced in its stead, and no hydrogen gas will be produced.

The following cations have lower electrode potential than H+ and are therefore suitable for use as electrolyte cations: Li+, Rb+, K+, Cs+, Ba2+, Sr2+, Ca2+, Na+, and Mg2+. Sodium and lithium are frequently used, as they form inexpensive, soluble salts.

If an acid is used as the electrolyte, the cation is H+, and there is no competitor for the H+ created by disassociating water. The most commonly used anion is sulfate (SO2−
4), as it is very difficult to oxidize, with the standard potential for oxidation of this ion to the peroxodisulfate ion being −2.05 volts.

Strong acids such as sulfuric acid (H2SO4), and strong bases such as potassium hydroxide (KOH), and sodium hydroxide (NaOH) are frequently used as electrolytes due to their strong conducting abilities.

A solid polymer electrolyte can also be used such as Nafion and when applied with a special catalyst on each side of the membrane can efficiently split the water molecule with as little as 1.5 Volts.

Read more about this topic:  Electrolysis Of Water

Famous quotes containing the word selection:

    Judge Ginsburg’s selection should be a model—chosen on merit and not ideology, despite some naysaying, with little advance publicity. Her treatment could begin to overturn a terrible precedent: that is, that the most terrifying sentence among the accomplished in America has become, “Honey—the White House is on the phone.”
    Anna Quindlen (b. 1952)