Electric Arc Furnace - Construction

Construction

An electric arc furnace used for steelmaking consists of a refractory-lined vessel, usually water-cooled in larger sizes, covered with a retractable roof, and through which one or more graphite electrodes enter the furnace. The furnace is primarily split into three sections:

  • the shell, which consists of the sidewalls and lower steel "bowl";
  • the hearth, which consists of the refractory that lines the lower bowl;
  • the roof, which may be refractory-lined or water-cooled, and can be shaped as a section of a sphere, or as a frustum (conical section). The roof also supports the refractory delta in its centre, through which one or more graphite electrodes enter.

The hearth may be hemispherical in shape, or in an eccentric bottom tapping furnace (see below), the hearth has the shape of a halved egg. In modern meltshops, the furnace is often raised off the ground floor, so that ladles and slag pots can easily be maneuvered under either end of the furnace. Separate from the furnace structure is the electrode support and electrical system, and the tilting platform on which the furnace rests. Two configurations are possible: the electrode supports and the roof tilt with the furnace, or are fixed to the raised platform.

A typical alternating current furnace has three electrodes. Electrodes are round in section, and typically in segments with threaded couplings, so that as the electrodes wear, new segments can be added. The arc forms between the charged material and the electrode, the charge is heated both by current passing through the charge and by the radiant energy evolved by the arc. The electrodes are automatically raised and lowered by a positioning system, which may use either electric winch hoists or hydraulic cylinders. The regulating system maintains approximately constant current and power input during the melting of the charge, even though scrap may move under the electrodes as it melts. The mast arms holding the electrodes carry heavy busbars, which may be hollow water-cooled copper pipes carrying current to the electrode holders. Modern systems use "hot arms", where the whole arm carries the current, increasing efficiency. These can be made from copper-clad steel or aluminium. Since the electrodes move up and down automatically for regulation of the arc, and are raised to allow removal of the furnace roof, heavy water-cooled cables connect the bus tubes/arms with the transformer located adjacent to the furnace. To protect the transformer from heat, it is installed in a vault.

The furnace is built on a tilting platform so that the liquid steel can be poured into another vessel for transport. The operation of tilting the furnace to pour molten steel is called "tapping". Originally, all steelmaking furnaces had a tapping spout closed with refractory that washed out when the furnace was tilted, but often modern furnaces have an eccentric bottom tap-hole (EBT) to reduce inclusion of nitrogen and slag in the liquid steel. These furnaces have a taphole that passes vertically through the hearth and shell, and is set off-centre in the narrow "nose" of the egg-shaped hearth. It is filled with refractory sand, such as olivine, when it is closed off. Modern plants may have two shells with a single set of electrodes that can be transferred between the two; one shell preheats scrap while the other shell is utilised for meltdown. Other DC-based furnaces have a similar arrangement, but have electrodes for each shell and one set of electronics.

AC furnaces usually exhibit a pattern of hot and cold-spots around the hearth perimeter, with the cold-spots located between the electrodes. Modern furnaces mount oxygen-fuel burners in the sidewall and use them to provide chemical energy to the cold-spots, making the heating of the steel more uniform. Additional chemical energy is provided by injecting oxygen and carbon into the furnace; historically this was done through lances in the slag door, now this is mainly done through multiple wall-mounted injection units.

A mid-sized modern steelmaking furnace would have a transformer rated about 60,000,000 volt-amperes (60 MVA), with a secondary voltage between 400 and 900 volts and a secondary current in excess of 44,000 amperes. In a modern shop such a furnace would be expected to produce a quantity of 80 metric tonnes of liquid steel in approximately 60 minutes from charging with cold scrap to tapping the furnace. In comparison, basic oxygen furnaces can have a capacity of 150–300 tonnes per batch, or "heat", and can produce a heat in 30–40 minutes. Enormous variations exist in furnace design details and operation, depending on the end product and local conditions, as well as ongoing research to improve furnace efficiency. The largest scrap-only furnace (in terms of tapping weight and transformer rating) is in Turkey, with a tap weight of 300 metric tonnes and a transformer of 300 MVA.

To produce a ton of steel in an electric arc furnace requires approximately 400 kilowatt-hours per short ton or about 440 kWh per metric tonne; the theoretical minimum amount of energy required to melt a tonne of scrap steel is 300 kWh (melting point 1520°C/2768°F). Therefore, the 300-tonne, 300 MVA EAF mentioned above will require approximately 132 MWh of energy to melt the steel, and a "power-on time" (the time that steel is being melted with an arc) of approximately 37 minutes. Electric arc steelmaking is only economical where there is plentiful electricity, with a well-developed electrical grid. In many locations, mills operate during off-peak hours when utilities have surplus power generating capacity.

Read more about this topic:  Electric Arc Furnace

Famous quotes containing the word construction:

    The construction of life is at present in the power of facts far more than convictions.
    Walter Benjamin (1892–1940)

    No real “vital” character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the author’s personality, developing by internal necessity as much as by external addition.
    —T.S. (Thomas Stearns)

    There’s no art
    To find the mind’s construction in the face:
    He was a gentleman on whom I built
    An absolute trust.
    William Shakespeare (1564–1616)