Eigenvector Slew

In aerospace engineering, especially those areas dealing with spacecraft, the eigenvector slew is a method to calculate a steering correction (called a slew) by rotating the spacecraft around one fixed axis. This corresponds in general to the fastest and most efficient way to reach the desired target orientation as there is only one acceleration phase and one braking phase for the angular rate. If this fixed axis is not a principal axis a time varying torque must be applied to force the spacecraft to rotate as desired, though. Also the gyroscopic effect of momentum wheels must be compensated for.

That such a rotation exists corresponds precisely to a main result of the mathematical theory of rotation operators, the (only real) eigenvector of the rotation operator corresponding to the desired re-orientation is this axis.

Given the current orientation of the craft, and the desired orientation of the craft in cartesian coordinates, the required axis of rotation and corresponding rotation angle to achieve the new orientation is determined by computing the eigenvector of the rotation operator.

Read more about Eigenvector Slew:  Problem, Solution, See Also

Famous quotes containing the word slew:

    As Caesar loved me, I weep for him; as he was fortunate, I rejoice at it; as he was valiant, I honor him; but as he was ambitious, I slew him. There is tears for his love; joy for his fortune; honor for his valor; and death for his ambition.
    William Shakespeare (1564–1616)