Efficient Estimator - Relative Efficiency

Relative Efficiency

If and are estimators for the parameter, then is said to dominate if:

  1. its mean squared error (MSE) is smaller for at least some value of
  2. the MSE does not exceed that of for any value of θ.

Formally, dominates if


\mathrm{E}
\left[ (T_1 - \theta)^2
\right]
\leq
\mathrm{E}
\left[ (T_2-\theta)^2
\right]

holds for all, with strict inequality holding somewhere.

The relative efficiency is defined as


e(T_1,T_2)
=
\frac {\mathrm{E} \left} {\mathrm{E} \left}

Although is in general a function of, in many cases the dependence drops out; if this is so, being greater than one would indicate that is preferable, whatever the true value of .

Read more about this topic:  Efficient Estimator

Famous quotes containing the words relative and/or efficiency:

    Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.
    Charles Sanders Peirce (1839–1914)

    “Never hug and kiss your children! Mother love may make your children’s infancy unhappy and prevent them from pursuing a career or getting married!” That’s total hogwash, of course. But it shows on extreme example of what state-of-the-art “scientific” parenting was supposed to be in early twentieth-century America. After all, that was the heyday of efficiency experts, time-and-motion studies, and the like.
    Lawrence Kutner (20th century)