DVB-S2

Digital Video Broadcasting - Satellite - Second Generation (DVB-S2) is a digital television broadcast standard that has been designed as a successor for the popular DVB-S system. It was developed in 2003 by the DVB Project, an international industry consortium, and ratified by ETSI (EN 302307) in March 2005. The standard is based on, and improves upon DVB-S and the electronic news-gathering (or Digital Satellite News Gathering) system, used by mobile units for sending sounds and images from remote locations world-wide back to their home television stations.

DVB-S2 is envisaged for broadcast services including standard and HDTV, interactive services including Internet access, and (professional) data content distribution. The development of DVB-S2 coincided with the introduction of HDTV and H.264 (MPEG-4 AVC) video codecs.

Two new key features that were added compared to the DVB-S standard are:

  • A powerful coding scheme based on a modern LDPC code.
  • VCM (Variable Coding and Modulation) and ACM (Adaptive Coding and Modulation) modes, which allow optimizing bandwidth utilization by dynamically changing transmission parameters.

Other features include enhanced modulation schemes up to 32APSK, additional code rates, and the introduction of a generic transport mechanism for IP packet data including MPEG-4 audio–video streams, while supporting backward compatibility with existing MPEG-2 TS based transmission.

DVB-S2 achieves a significantly better performance than its predecessors – mainly allowing for an increase of available bitrate over the same satellite transponder bandwidth. The measured DVB-S2 performance gain over DVB-S is around 30% at the same satellite transponder bandwidth and emitted signal power. When the contribution of improvements in video compression is added, an (MPEG-4 AVC) HDTV service can now be delivered in the same bandwidth that supported an early DVB-S based MPEG-2 SDTV service only a decade before.

Read more about DVB-S2:  Main Features, Use Cases, The DVB-S To DVB-S2 Upgrade Process