Set Theory Definition
Formally, let {Ai : i ∈ I} be a family of sets indexed by I. The disjoint union of this family is the set
The elements of the disjoint union are ordered pairs (x, i). Here i serves as an auxiliary index that indicates which Ai the element x came from.
Each of the sets Ai is canonically isomorphic to the set
Through this isomorphism, one may consider that Ai is canonically embedded in the disjoint union. For i ≠ j, the sets Ai* and Aj* are disjoint even if the sets Ai and Aj are not.
In the extreme case where each of the Ai are equal to some fixed set A for each i ∈ I, the disjoint union is the Cartesian product of A and I:
One may occasionally see the notation
for the disjoint union of a family of sets, or the notation A + B for the disjoint union of two sets. This notation is meant to be suggestive of the fact that the cardinality of the disjoint union is the sum of the cardinalities of the terms in the family. Compare this to the notation for the Cartesian product of a family of sets.
Disjoint unions are also sometimes written or .
In the language of category theory, the disjoint union is the coproduct in the category of sets. It therefore satisfies the associated universal property. This also means that the disjoint union is the categorical dual of the Cartesian product construction. See coproduct for more details.
For many purposes, the particular choice of auxiliary index is unimportant, and in a simplifying abuse of notation, the indexed family can be treated simply as a collection of sets. In this case is referred to as a copy of and the notation is sometimes used.
Read more about this topic: Disjoint Union
Famous quotes containing the words set, theory and/or definition:
“The extra worry began iton the
Blue blue mountainshe never set foot
And then and there. Meanwhile the host
Mourned her quiet tenure. They all stayed chatting.
No one did much about eating.”
—John Ashbery (b. 1927)
“There never comes a point where a theory can be said to be true. The most that one can claim for any theory is that it has shared the successes of all its rivals and that it has passed at least one test which they have failed.”
—A.J. (Alfred Jules)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)



