In computing, a disjoint-set data structure is a data structure that keeps track of a set of elements partitioned into a number of disjoint (nonoverlapping) subsets. A union-find algorithm is an algorithm that performs two useful operations on such a data structure:
- Find: Determine which subset a particular element is in. This can be used for determining if two elements are in the same subset.
- Union: Join two subsets into a single subset.
Because it supports these two operations, a disjoint-set data structure is sometimes called a union-find data structure or merge-find set. The other important operation, MakeSet, which makes a set containing only a given element (a singleton), is generally trivial. With these three operations, many practical partitioning problems can be solved (see the Applications section).
In order to define these operations more precisely, some way of representing the sets is needed. One common approach is to select a fixed element of each set, called its representative, to represent the set as a whole. Then, Find(x) returns the representative of the set that x belongs to, and Union takes two set representatives as its arguments.
Read more about Disjoint-set Data Structure: Disjoint-set Linked Lists, Disjoint-set Forests, Applications, History
Famous quotes containing the words data and/or structure:
“To write it, it took three months; to conceive it three minutes; to collect the data in itall my life.”
—F. Scott Fitzgerald (18961940)
“One theme links together these new proposals for family policythe idea that the family is exceedingly durable. Changes in structure and function and individual roles are not to be confused with the collapse of the family. Families remain more important in the lives of children than other institutions. Family ties are stronger and more vital than many of us imagine in the perennial atmosphere of crisis surrounding the subject.”
—Joseph Featherstone (20th century)