Directional Statistics - The Fundamental Difference Between Linear and Circular Statistics

The Fundamental Difference Between Linear and Circular Statistics

A simple way to calculate the mean of a series of angles (in the interval [0°, 360°)) is to calculate the mean of the cosines and sines of each angle, and obtain the angle by calculating the inverse tangent. Consider the following three angles as an example: 10, 20, and 30 degrees. Intuitively, calculating the mean would involve adding these three angles together and dividing by 3, in this case indeed resulting in a correct mean angle of 20 degrees. By rotating this system anticlockwise through 15 degrees the three angles become 355 degrees, 5 degrees and 15 degrees. The naive mean is now 125 degrees, which is the wrong answer, as it should be 5 degrees. The vector mean can be calculated in the following way, using the mean sine and the mean cosine :


\bar s = \frac{1}{3} \left( \sin (355^\circ) + \sin (5^\circ) + \sin (15^\circ) \right)
= \frac{1}{3} \left( -0.087 + 0.087 + 0.259 \right)
\approx 0.086

\bar c = \frac{1}{3} \left( \cos (355^\circ) + \cos (5^\circ) + \cos (15^\circ) \right)
= \frac{1}{3} \left( 0.996 + 0.996 + 0.966 \right)
\approx 0.986

\bar \theta =
\left.
\begin{cases}
\arctan \left( \frac{\bar s}{ \bar c} \right) & \bar s > 0 ,\ \bar c > 0 \\ \arctan \left( \frac{\bar s}{ \bar c} \right) + 180^\circ & \bar c < 0 \\
\arctan \left (\frac{\bar s}{\bar c}
\right)+360^\circ & \bar s <0 ,\ \bar c >0
\end{cases}
\right\}
= \arctan \left( \frac{0.086}{0.986} \right)
= \arctan (0.087) = 5^\circ.

This may be more succinctly stated by realizing that directional data are in fact vectors of unit length. In the case of one-dimensional data, these data points can be represented conveniently as complex numbers of unit magnitude, where is the measured angle. The mean resultant vector for the sample is then:


\overline{\mathbf{\rho}}=\frac{1}{N}\sum_{n=1}^N z_n.

The sample mean angle is then the argument of the mean resultant:


\overline{\theta}=\mathrm{Arg}(\overline{\mathbf{\rho}}).

The length of the sample mean resultant vector is:


\overline{R}=|\overline{\mathbf{\rho}}|

and will have a value between 0 and 1. Thus the sample mean resultant vector can be represented as:


\overline{\mathbf{\rho}}=\overline{R}\,e^{i\overline{\theta}}.

Read more about this topic:  Directional Statistics

Famous quotes containing the words fundamental, difference, circular and/or statistics:

    Our species successfully raised children for tens of thousands of years before the first person wrote down the word “psychology.” The fundamental skills needed to be a parent are within us. All we’re really doing is fine-tuning a process that’s already remarkably successful.
    Lawrence Kutner (20th century)

    It is so wonderful to our neurologists that a man can see without his eyes, that it does not occur to them that is just as wonderful that he should see with them; and that is ever the difference between the wise and the unwise: the latter wonders at what is unusual, the wise man wonders at the usual.
    Ralph Waldo Emerson (1803–1882)

    Oh Lolita, you are my girl, as Vee was Poe’s and Bea Dante’s, and what little girl would not like to whirl in a circular skirt and scanties?
    Vladimir Nabokov (1899–1977)

    We already have the statistics for the future: the growth percentages of pollution, overpopulation, desertification. The future is already in place.
    Günther Grass (b. 1927)