Definition
Given groups G and H, the direct product G × H is defined as follows:
- The elements of G × H are ordered pairs (g, h), where g ∈ G and h ∈ H. That is, the set of elements of G × H is the Cartesian product of the sets G and H.
- The binary operation on G × H is defined componentwise:
(g1, h1) · (g2, h2) = (g1 · g2, h1 · h2)
The resulting algebraic object satisfies the axioms for a group. Specifically:
- Associativity
- The binary operation on G × H is indeed associative.
- Identity
- The direct product has an identity element, namely (1G, 1H), where 1G is the identity element of G and 1H is the identity element of H.
- Inverses
- The inverse of an element (g, h) of G × H is the pair (g−1, h−1), where g−1 is the inverse of g in G, and h−1 is the inverse of h in H.
Read more about this topic: Direct Product Of Groups
Famous quotes containing the word definition:
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)