Direct Product of Groups

Direct Product Of Groups

In the mathematical field of group theory, the direct product is an operation that takes two groups G and H and constructs a new group, usually denoted G × H. This operation is the group-theoretic analogue of the Cartesian product of sets, and is one of several important notions of direct product in mathematics.

In the context of abelian groups, the direct product is sometimes referred to as the direct sum, and is denoted GH. Direct sums play an important role in the classification of abelian groups: according to fundamental theorem of finite abelian groups, every finite abelian group can be expressed as the direct sum of cyclic groups.

Read more about Direct Product Of Groups:  Definition, Examples, Elementary Properties, Algebraic Structure

Famous quotes containing the words direct, product and/or groups:

    Of course it is of no use to direct our steps to the woods, if they do not carry us thither. I am alarmed when it happens that I have walked a mile into the woods bodily, without getting there in spirit.... What business have I in the woods, if I am thinking of something out of the woods?
    Henry David Thoreau (1817–1862)

    Out of the thousand writers huffing and puffing through movieland there are scarcely fifty men and women of wit or talent. The rest of the fraternity is deadwood. Yet, in a curious way, there is not much difference between the product of a good writer and a bad one. They both have to toe the same mark.
    Ben Hecht (1893–1964)

    screenwriter
    Policemen so cherish their status as keepers of the peace and protectors of the public that they have occasionally been known to beat to death those citizens or groups who question that status.
    David Mamet (b. 1947)