Group Direct Product
In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .
It is defined as follows:
- the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
- on these elements put an operation, defined elementwise:
(g, h) × (g', h' ) = (g * g', h ● h' )
(Note the operation * may be the same as ●.)
This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).
The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.
As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).
With a direct product, we get some natural group homomorphisms for free: the projection maps
- ,
called the coordinate functions.
Also, every homomorphism f on the direct product is totally determined by its component functions .
For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:
- Zn
- Rn (with additional vector space structure this is called Euclidean space, see below)
Read more about this topic: Direct Product
Famous quotes containing the words group, direct and/or product:
“The poet who speaks out of the deepest instincts of man will be heard. The poet who creates a myth beyond the power of man to realize is gagged at the peril of the group that binds him. He is the true revolutionary: he builds a new world.”
—Babette Deutsch (18951982)
“Ignorant kindness may have the effect of cruelty; but to be angry with it as if it were direct cruelty would be an ignorant unkindness.”
—George Eliot [Mary Ann (or Marian)
“[The political mind] is a strange mixture of vanity and timidity, of an obsequious attitude at one time and a delusion of grandeur at another time. The political mind is the product of men in public life who have been twice spoiled. They have been spoiled with praise and they have been spoiled with abuse.”
—Calvin Coolidge (18721933)