Direct Product - Group Direct Product

Group Direct Product

In group theory one can define the direct product of two groups (G, *) and (H, ●), denoted by G × H. For abelian groups which are written additively, it may also be called the direct sum of two groups, denoted by .

It is defined as follows:

  • the set of the elements of the new group is the cartesian product of the sets of elements of G and H, that is {(g, h): g in G, h in H};
  • on these elements put an operation, defined elementwise:
    (g, h) × (g', h' ) = (g * g', hh' )

(Note the operation * may be the same as ●.)

This construction gives a new group. It has a normal subgroup isomorphic to G (given by the elements of the form (g, 1)), and one isomorphic to H (comprising the elements (1, h)).

The reverse also holds, there is the following recognition theorem: If a group K contains two normal subgroups G and H, such that K= GH and the intersection of G and H contains only the identity, then K is isomorphic to G x H. A relaxation of these conditions, requiring only one subgroup to be normal, gives the semidirect product.

As an example, take as G and H two copies of the unique (up to isomorphisms) group of order 2, C2: say {1, a} and {1, b}. Then C2×C2 = {(1,1), (1,b), (a,1), (a,b)}, with the operation element by element. For instance, (1,b)*(a,1) = (1*a, b*1) = (a,b), and (1,b)*(1,b) = (1,b2) = (1,1).

With a direct product, we get some natural group homomorphisms for free: the projection maps

,

called the coordinate functions.

Also, every homomorphism f on the direct product is totally determined by its component functions .

For any group (G, *), and any integer n ≥ 0, multiple application of the direct product gives the group of all n-tuples Gn (for n=0 the trivial group). Examples:

  • Zn
  • Rn (with additional vector space structure this is called Euclidean space, see below)

Read more about this topic:  Direct Product

Famous quotes containing the words group, direct and/or product:

    Remember that the peer group is important to young adolescents, and there’s nothing wrong with that. Parents are often just as important, however. Don’t give up on the idea that you can make a difference.
    —The Lions Clubs International and the Quest Nation. The Surprising Years, I, ch.5 (1985)

    No direct hit to smash the shatter-proof
    And lodge at last the quivering needle
    Clean in the eye of one who stands transfixed
    In fascination of her brightness.
    Karl Shapiro (b. 1913)

    The history is always the same the product is always different and the history interests more than the product. More, that is, more. Yes. But if the product was not different the history which is the same would not be more interesting.
    Gertrude Stein (1874–1946)