Digital Radio Frequency Memory - Overview

Overview

A DRFM system is designed to digitize an incoming RF input signal at a frequency and bandwidth necessary to adequately represent the signal, then reconstruct that RF signal when required. The most significant aspect of DRFM is that as a digital "duplicate" of the received signal, it is coherent with the source of the received signal. As opposed to analog 'memory loops', there is no signal degradation caused by continuously cycling the energy through a front-end amplifier which allows for greater range errors for reactive jamming and allows for predictive jamming. A DRFM may modify the signal prior to retransmitting which can alter the signature of the false target; adjusting its apparent radar cross section, range, velocity, and angle. DRFMs present a significant obstacle for radar sensors.

Earliest reference

The earliest reference to a digital means of storage of rf pulse signals is an article in the Jan/Feb 1975 issue of Electronic Warfare, a publication of the Association of Old Crows, written by Sheldon C. Spector, Program Manager, entitled "A Coherent Microwave Memory Using Digital Storage: The Loopless Memory Loop"

An example of the application of DRFM in jammers: The DRFM digitizes the received signal and stores a coherent copy in digital memory. As needed, the signal is replicated and retransmitted. Being a coherent representation of the original signal, the transmitting radar will not be able to distinguish it from other legitimate signals it receives and processes as targets. As the signal is stored in memory, it can be used to create false range targets both behind (reactive jamming) and ahead of (predictive jamming) the target intended for protection. Slight variations in frequency can be made to create Doppler (velocity) errors in the victim receiver as well. DRFM can also be used to create distorted phase-fronts at the victim receive antenna which is essential for countering monopulse radar angular measurement techniques.

Read more about this topic:  Digital Radio Frequency Memory