Diagonally Dominant Matrix

Diagonally Dominant Matrix

In mathematics, a matrix is said to be diagonally dominant if for every row of the matrix, the magnitude of the diagonal entry in a row is larger than or equal to the sum of the magnitudes of all the other (non-diagonal) entries in that row. More precisely, the matrix A is diagonally dominant if

where aij denotes the entry in the ith row and jth column.

Note that this definition uses a weak inequality, and is therefore sometimes called weak diagonal dominance. If a strict inequality (>) is used, this is called strict diagonal dominance. The unqualified term diagonal dominance can mean both strict and weak diagonal dominance, depending on the context.

Read more about Diagonally Dominant Matrix:  Variations, Examples, Applications and Properties

Famous quotes containing the words dominant and/or matrix:

    The dominant metaphor of conceptual relativism, that of differing points of view, seems to betray an underlying paradox. Different points of view make sense, but only if there is a common co-ordinate system on which to plot them; yet the existence of a common system belies the claim of dramatic incomparability.
    Donald Davidson (b. 1917)

    As all historians know, the past is a great darkness, and filled with echoes. Voices may reach us from it; but what they say to us is imbued with the obscurity of the matrix out of which they come; and try as we may, we cannot always decipher them precisely in the clearer light of our day.
    Margaret Atwood (b. 1939)