Density Matrix - "Quantum Liouville", Moyal's Equation

"Quantum Liouville", Moyal's Equation

The density matrix operator may also be realized in phase space. Under the Wigner map, the density matrix transforms into the equivalent Wigner function,

The equation for the time-evolution of the Wigner function is then the Wigner-transform of the above von Neumann equation,

where H(q,p) is the Hamiltonian, and { { •,• } } is the Moyal bracket, the transform of the quantum commutator.

The evolution equation for the Wigner function is then analogous to that of its classical limit, the Liouville equation of classical physics. In the limit of vanishing Planck's constant ħ, W(q,p,t) reduces to the classical Liouville probability density function in phase space.

The classical Liouville equation can be solved using the method of characteristics for partial differential equations, the characteristic equations being Hamilton's equations. The Moyal equation in quantum mechanics similarly admits formal solutions in terms of quantum characteristics, predicated on the ∗−product of phase space, although, in actual practice, solution-seeking follows different methods.

Read more about this topic:  Density Matrix

Famous quotes containing the words quantum and/or equation:

    A personality is an indefinite quantum of traits which is subject to constant flux, change, and growth from the birth of the individual in the world to his death. A character, on the other hand, is a fixed and definite quantum of traits which, though it may be interpreted with slight differences from age to age and actor to actor, is nevertheless in its essentials forever fixed.
    Hubert C. Heffner (1901–1985)

    Jail sentences have many functions, but one is surely to send a message about what our society abhors and what it values. This week, the equation was twofold: female infidelity twice as bad as male abuse, the life of a woman half as valuable as that of a man. The killing of the woman taken in adultery has a long history and survives today in many cultures. One of those is our own.
    Anna Quindlen (b. 1952)