Delivery Traffic Indication Message

A delivery traffic indication message is a kind of traffic indication message (TIM) which informs the clients about the presence of buffered multicast/broadcast data on the access point. It is generated within the periodic beacon at a frequency specified by the DTIM Interval. Beacons are packets sent by an access point to synchronize a wireless network. Normal TIMs that are present in every beacon are for signaling the presence of buffered unicast data. After a DTIM, the access point will send the multicasted/broadcasted data on the channel following the normal channel access rules (CSMA/CA). This helps to have minimum collision and in effect, increased throughput. In cases where there is not much interference, or where the number of clients is limited, the DTIM interval has little or no significance. Usually a value of 1 or 2. Also see Wi-Fi as established by the Wi-Fi Alliance

According to the 802.11 standards, a Delivery Traffic Indication Message (DTIM) period value is a number that determines how often a beacon frame includes a Delivery Traffic Indication Message, and this number is included in each beacon frame. A DTIM is included in beacon frames, according to the DTIM period, to indicate to the client devices whether the access point has buffered broadcast and/or multicast data waiting for them. Following a beacon frame that includes a DTIM, the access point will release the buffered broadcast and/or multicast data, if any exists.

Since beacon frames are sent using the mandatory 802.11 carrier sense multiple access/collision detection (CSMA/CD) algorithm, the access point must wait if a client device is sending a frame when the beacon is to be sent. As a result, the actual time between beacons may be longer than the beacon interval. Client devices that awaken from power-save mode may find that they have to wait longer than expected to receive the next beacon frame. Client devices, however, compensate for this inaccuracy by utilizing the time-stamp found within the beacon frame.

The 802.11 standards define a power-save mode for client devices. In power-save mode, a client device may choose to sleep for one or more beacon intervals waking for beacon frames that include DTIMs. When the DTIM period is 2, a client device in power-save mode will awaken to receive every other beacon frame. Upon entering power-save mode, a client device will transmit a notification to the access point, so that the access point will know how to handle unicast traffic destined for the client device. The client device will begin to sleep according to the DTIM period.

-The higher the DTIM period, the longer a client device may sleep and therefore the more power that particular client device may potentially save.

-Client devices in wireless networks may have conflicting requirements for power consumption and communication throughput when in power-save mode. For example, laptops may require relatively high communication throughput and may have low sensitivity to power consumption. Therefore, a relatively low DTIM period, for example 1, may be suitable for laptops . However, cellphones may require relatively low communication throughput and may be operated by batteries of relatively low capacity. Therefore, a relatively high DTIM period, for example 8, may be suitable for cellphones. Further, PDA\Smart phones may require a medium to high communication throughput and may be operated by batteries of relatively low capacity. Therefore, a medium DTIM period, for example a value of 4, may be suitable for these devices.

-Currently, an access point is able to store only a single DTIM period. Consequently, different client devices in power-save mode will all wake up for the same beacon frames according to the DTIM period. Currently, a network manager may need to balance the conflicting requirements for power consumption and communication throughput when in power-save mode of client devices in different wireless networks when configuring the DTIM period of an access point. In the future an access point with support for two or more SSIDs may have SSID-dependent DTIM periods rather than a single DTIM period for all SSIDs. In other words, the network manager may configure the access point with DTIM periods on a per SSID basis. A network manager may consider the requirements of power consumption and communication throughput of client devices in a particular wireless networks when determining which DTIM period to configure for which SSID. A higher DTIM period may increase the potential savings in power consumption but may reduce the communication throughput, and vice versa.

Famous quotes containing the words delivery, traffic, indication and/or message:

    There was no speculation so promising, or at the same time so praisworthy, as the United Metropolitan Improved Hot Muffin and Crumpet Baking and Punctual Delivery Company.
    Charles Dickens (1812–1870)

    If you don’t have a policeman to stop traffic and let you walk across the street like you are somebody, how are you going to know you are somebody?
    John C. White (b. 1924)

    The first indication of a young person’s growing smarter is that he no longer understands the things which he used to consider quite intelligible and self-evident.
    Franz Grillparzer (1791–1872)

    For the message about the cross is foolishness to those who are perishing, but to us who are being saved it is the power of God.
    Bible: New Testament, 1 Corinthians 1:18.